KINETIC AGGREGATION MODELS LEADING TO MORPHOLOGICAL MEMORY OF FORMED STRUCTURES ArticleAdzhiiev S.Z., Vedenyapin V.V., Melikhov I.V.Computational Mathematics and Mathematical Physics. Том 62. 2022. С. 254-268
C.K. ГОДУНОВ И КИНЕТИЧЕСКАЯ ТЕОРИЯ В ИПМ ИМ. М.В. КЕЛДЫША РАН ArticleАджиев С.З., Батищева Я.Г., Веденяпин В.В., Волков Ю.А., Казанцева В.В., Мелихов И.В., Негматов М.А., Орлов Ю.Н., Фимин Н.Н., Чечеткин В.М.Журнал вычислительной математики и математической физики. Том 60. 2020. С. 621-625
ON THE H-THEOREM FOR THE BECKER–DÖRING SYSTEM OF EQUATIONS FOR THE CASES OF CONTINUUM APPROXIMATION AND DISCRETE TIME ArticleAdzhiev S.Z., Melikhov I.V., Vedenyapin V.V.Physica A: Statistical Mechanics and its Applications. Том 553. 2020.
S.K. GODUNOV AND KINETIC THEORY AT THE KELDYSH INSTITUTE OF APPLIED MATHEMATICS OF THE RUSSIAN ACADEMY OF SCIENCES ArticleAdzhiiev S.Z., Batishcheva Y.G., Vedenyapin V.V., Volkov Y.A., Kazantseva V.V., Melikhov I.V., Negmatov M.A., Orlov Y.N., Fimin N.N., Chechetkin V.M.Computational Mathematics and Mathematical Physics. Том 60. 2020. С. 610-614
THE KINETIC VLASOV AND FOKKER-PLANK EQUATIONS AND MODEL OF AGGREGATION OF DISPERSED SOLIDS ArticleAdzhiev S.Z., Vedenyapin V.V., Melikhov I.V.VI Международная конференция «Лазерные, плазменные исследования и технологии ЛаПлаз-2020». 2020. С. 93-94
S.K. GODUNOV AND KINETIC THEORY IN KIAM RAS ArticleVedenyapin V.V., Adzhiev S.Z., Batischeva Ya.G., Volkov Y.A., Kazantseva V.V., Melikhov I.V., Orlov Y.N., Negmatov M.A., Fimin N.N., Chechetkin V.M.Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov's Legacy: A Liber Amicorum to Professor Godunov. 2020. С. 381-385
PROPERTIES OF THE VLASOV–MAXWELL–EINSTEIN EQUATIONS AND THEIR APPLICATION TO THE PROBLEMS OF GENERAL RELATIVITY ArticleVedenyapin V.V., Fimin N.N., Chechetkin V.M.Gravitation and Cosmology. Том 26. 2020. С. 173-183
EQUATION OF VLASOV–MAXWELL–EINSTEIN TYPE AND TRANSITION TO A WEAKLY RELATIVISTIC APPROXIMATION ArticleVedenyapin V.V., Fimin N.N., Chechetkin V.M.Computational Mathematics and Mathematical Physics. Том 59. 2019. С. 1816-1831
APPROACHES TO DETERMINING THE KINETICS FOR THE FORMATION OF A NANO-DISPERSED SUBSTANCE FROM THE EXPERIMENTAL DISTRIBUTION FUNCTIONS OF ITS NANOPARTICLE PROPERTIES ArticleAdzhiev S.Z., Melikhov I.V., Vedenyapin V.V.NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS. Том 10. 2019. С. 549-563
Н-THEOREM FOR CONTINUOUS- AND DISCRETE-TIME CHEMICAL KINETIC SYSTEMS AND A SYSTEM OF NUCLEOSYNTHESIS EQUATIONS ArticleAdzhiev S.Z., Vedenyapin V.V., Filippov S.S.Computational Mathematics and Mathematical Physics. Том 58. 2018. С. 1462-1476
SCHRÖDINGER EQUATION AS A SELF-CONSISTENT FIELD ArticleVedenyapin V.V., Kazakova T.S., Kisselevskaya-Babinina V.Y., Chetverushkin B.N.Doklady Mathematics. Том 97. 2018. С. 240-242
EULER AND NAVIER–STOKES EQUATIONS AS SELF-CONSISTENT FIELDS ArticleVedenyapin V.V., Andreeva A.A., Vorobyeva V.V.Doklady Mathematics. Том 97. 2018. С. 283-285
GENERALIZED BOLTZMANN-TYPE EQUATIONS FOR AGGREGATION IN GASES ArticleAdzhiev S.Z., Vedenyapin V.V., Volkov Y.A., Melikhov I.V.Computational Mathematics and Mathematical Physics. Том 57. 2017. С. 2017-2029
THE H-THEOREM FOR THE PHYSICO-CHEMICAL KINETIC EQUATIONS WITH EXPLICIT TIME DISCRETIZATION ArticleAdzhiev S.Z., Melikhov I.V., Vedenyapin V.V.Physica A: Statistical Mechanics and its Applications. Том 481. 2017. С. 60-69
VLASOV-TYPE AND LIOUVILLE-TYPE EQUATIONS, THEIR MICROSCOPIC, ENERGETIC AND HYDRODYNAMICAL CONSEQUENCES ArticleVedenyapin V.V., Negmatov M.A., Fimin N.N.Izvestiya Mathematics. Том 81. 2017. С. 505-541