INVESTIGATION OF THE EFFICIENCYOF USING U-NET AND CYCLEGAN ARCHITECTURESIN INVERSE LITHOGRAPHY-BASED 90-NM PHOTOMASK GENERATION ArticleKarandashev I.M., Teplov G.S.Mathematical modeling in materials science of electronic component. ICM3SEC-2023. 2023. С. 70-72
SIMULATION OF HYDROGEN COMBUSTION AT DIFFERENT PRESSURES USING A NEURAL NETWORK ArticleMal’Sagov M.Y., Mikhal’Chenko E.V., Karandashev I.M., Nikitin V.F.COMBUSTION EXPLOSION AND SHOCK WAVES. Том 59. 2023. С. 145-150
INVESTIGATING THE EFFICIENCY OF USING U-NET, ERF-NET AND DEEPLABV3 ARCHITECTURES IN INVERSE LITHOGRAPHY-BASED 90-NM PHOTOMASK GENERATION ArticleKarandashev I.M., Teplov G.S., Karmanov A.A., Keremet V.V., Kuzovkov A.V.Optical Memory and Neural Networks (Information Optics). Том 32. 2023. С. 219-225
МОДЕЛИРОВАНИЕ ПРОЦЕССА ГОРЕНИЯ ВОДОРОДА ПРИ РАЗЛИЧНЫХ ДАВЛЕНИЯХ С ПОМОЩЬЮ НЕЙРОННОЙ СЕТИ ArticleМальсагов М.Ю., Михальченко Е.В., Карандашев Я.М., Никитин В.Ф.Физика горения и взрыва. Том 59. 2023. С. 24-30
ПРИМЕНЕНИЕ САМООБУЧАЮЩИХСЯ АЛГОРИТМОВ ДЛЯ ДЕТЕКЦИИ АНОМАЛИЙ НА РЕНТГЕНОВСКИХ СНИМКАХ ArticleСАЙБОДАЛОВ М.Х., КАРАНДАШЕВ Я.М.XXV МЕЖДУНАРОДНАЯ НАУЧНО-ТЕХНИЧЕСКАЯ КОНФЕРЕНЦИЯ «НЕЙРОИНФОРМАТИКА-2023». 2023. С. 370-380
ИСПОЛЬЗОВАНИЕ НЕЙРОННЫХ СЕТЕЙ ДЛЯ ВЫЯВЛЕНИЯ АНОМАЛИЙ НА РЕНТГЕНОВСКИХ СНИМКАХ, ПОЛУЧЕННЫХ НА СКАНЕРАХ ПЕРСОНАЛЬНОГО ДОСМОТРА ArticleМАРКОВ А.С., КОТЛЯРОВ Е.Ю., АНОСОВА Н.П., ПОПОВ В.А., КАРАНДАШЕВ Я.М., АПУШКИНСКАЯ Д.Е.Avtomatika i Telemekhanika. 2022. С. 23-34
ANALYSE EXHALED AIR WITH MASS SPECTROMETRY IN PATIENTS WITH CARDIOVASCULAR AND ONCOLOGICAL DISEASES ArticleKarandashev Y.M., Mohammed M.A.Современные методы теории краевых задач. 2022. С. 331-333
APPLICATION OF NEURAL NETWORK AUTO ENCODERS OF UNET TYPE FOR INVERSE PHOTOLITOGRAPHY TASKS ArticleKeremet V.V., Karandashev I.M., Kuzovkov A.V., Teplov G.S.Mathematical modeling in materials science of electronic component : Proceedings of the International conference. 2021. С. 22-25
USING MACHINE LEARNING METHODS TO PREDICT THE MAGNITUDE AND THE DIRECTION OF MASK FRAGMENTS DISPLACEMENT IN OPTICAL PROXIMITY CORRECTION (OPC) ArticleTryasoguzov P.E., Kuzovkov A.V., Karandashev I.M., Teplov G.S.Optical Memory and Neural Networks (Information Optics). Том 30. 2021. С. 291-297
EXPONENTIAL DISCRETIZATION OF WEIGHTS OF NEURAL NETWORK CONNECTIONS IN PRE-TRAINED NEURAL NETWORK. PART II: CORRELATION MAXIMIZATION ArticlePushkareva M.M., Karandashev I.M.Optical Memory and Neural Networks (Information Optics). Том 29. 2020. С. 179-186
EXPONENTIAL DISCRETIZATION OF WEIGHTS OF NEURAL NETWORK CONNECTIONS IN PRE-TRAINED NEURAL NETWORKS ArticleMalsagov M.Y., Khayrov E.M., Pushkareva M.M., Karandashev I.M.Optical Memory and Neural Networks (Information Optics). Том 28. 2019. С. 262-270
DEPENDENCE OF CRITICAL TEMPERATURE ON DISPERSION OF CONNECTIONS IN 2D GRID ArticleKryzhanovsky B.V., Karandashev I.M., Malsagov M.Y.Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Том 10878 LNCS. 2018. С. 695-702
DEPENDENCE OF CRITICAL PARAMETERS OF 2D ISING MODEL ON LATTICE SIZE ArticleKryzhanovsky B.V., Malsagov M.Y., Karandashev I.M.Optical Memory and Neural Networks (Information Optics). Том 27. 2018. С. 10-22
SPECTRAL CHARACTERISTICS OF A FINITE 2D ISING MODEL ArticleKarandashev I.M., Kryzhanovsky B.V., Malsagov M.Y.Optical Memory and Neural Networks (Information Optics). Том 27. 2018. С. 147-151