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ABSTRACT

Maize (Zea mays) is a critical crop for global food security and economic stability. However, it is highly
vulnerable to various diseases such as northern leaf blight, common rust, and maize lethal necrosis, which
can lead to significant crop losses if not detected early. Traditional CNN-based models, while effective in
extracting spatial features, often fail to capture subtle multi-scale variations necessary for distinguishing
between disease symptoms. These models also suffer from high computational complexity when deeper
layers are introduced to handle fine-grained details. Transformer-based models, on the other hand, provide
long-range dependencies but come with significant computational overhead, limiting their use in real-time
agricultural applications. To overcome these challenges, we propose MSCPNet, a novel architecture that
combines a truncated MobileNetV2 backbone with a Multi-Scale Convolutional PoolFormer block. The
truncated backbone ensures that only essential layers for general feature extraction are retained, enhancing
the model’s adaptability across domains. The Multi-Scale Convolutional PoolFormer block captures both
local and global dependencies through parallel convolutional branches of varying kernel sizes, while the
PoolFormer module efficiently handles feature aggregation without the heavy computational cost associated
with traditional attention mechanisms. This design allows the model to balance computational efficiency and
high accuracy, making it highly suitable for real-time maize disease detection. Extensive evaluations on the
maize leaf disease classification task yielded outstanding results, with the proposed MSCPNet achieving
an accuracy of 97.44%, precision of 96.76%, recall of 97.37%, Fl-score of 97.04%, and an MCC of
0.9653, with a model size of 998,084 parameters and 315,258,752 FLOPs. Furthermore, the model was
evaluated on the PlantVillage dataset for tomato leaf disease classification, where it achieved an accuracy of
99.32%, precision of 99.32%, recall of 99.33%, F1-score of 99.32%, and an MCC of 0.9925. These results
demonstrate the effectiveness and efficiency of MSCPNet in disease classification across different domains.

INDEX TERMS Maize Disease, Deep Learning, Feature Pooling, Image Classification, Multi-Scale
Feature Aggregation
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I. INTRODUCTION

Maize (Zea mays) is one of the most essential crops world-
wide, providing a major source of food, livestock feed,
and industrial raw materials. It is widely cultivated across
diverse geographic regions, playing a crucial role in ensur-
ing food security, particularly in areas heavily dependent
on agriculture. The significance of maize production cannot
be overstated, as it feeds millions globally and serves as a
key commodity in various industries. However, despite its
critical importance, maize is highly susceptible to a range of
diseases, including northern leaf blight, common rust, and
maize lethal necrosis, all of which can severely impact crop
yield and quality. These diseases, if not detected early, can
lead to catastrophic losses, with reductions in annual maize
production ranging from 10% to 30% in severely affected
regions [1]-[3]]. The late identification of such diseases exac-
erbates the problem by allowing pathogens to spread rapidly,
increasing the difficulty and cost of disease management.
Thus, there is a pressing need for efficient, early detection
methods that can minimize crop loss and ensure the sustain-
ability of maize production systems [4].

In recent years, image processing techniques, combined
with traditional machine learning algorithms, have been
widely employed to address the problem of early plant dis-
ease detection [5]]. These techniques leverage visual symp-
toms observed in leaf images to detect diseases at early
stages, which helps reduce crop loss and supports food
security efforts. Various machine learning algorithms, in-
cluding Support Vector Machines (SVM), K-Nearest Neigh-
bors (KNN), and Artificial Neural Networks (ANN), have
shown considerable promise in early-stage disease detection
by extracting important features such as color, texture, and
shape from leaf images 6], [[7]. However, these approaches
have notable limitations. They often require manual feature
extraction, which can be time-consuming and less effective
when applied to complex, real-world scenarios. Additionally,
the accuracy of traditional models tends to degrade in the
presence of environmental variability, such as inconsistent
lighting or occlusion from overlapping leaves. As a result,
more advanced, automated solutions are needed to address
these challenges and provide reliable disease detection across
diverse conditions [8]], [9]].

Vision Transformers (ViTs) have transformed the field
of computer vision by overcoming long-range dependencies
through the use of self-attention mechanisms. These mod-
els capture global context in images, enabling the under-
standing of complex relationships across different regions
of the image [[10]. However, one of the main drawbacks of
ViTs is their computational expense. The attention operations
scale quadratically with the number of tokens, leading to
significant memory and processing requirements as the in-
put size grows. This limitation makes ViTs computationally
expensive and difficult to deploy in resource-constrained
environments [11]. Furthermore, the parametric nature of
self-attention mechanisms exacerbates this issue, as each
token’s query, key, and value vectors must be independently
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computed and processed. Despite these challenges, recent
advancements such as additive attention and separable self-
attention mechanisms have been explored to reduce the com-
putational burden while maintaining the ability to model
global dependencies effectively. These innovations aim to
make ViTs more practical for real-time applications without
compromising performance [12]], [13]].

In this study, we propose a novel architecture designed to
enhance the model’s ability to capture both local and global
dependencies by introducing the Multi-Scale convolutional
PoolFormer block. This block process features at multiple
scales simultaneously by incorporating parallel convolutional
branches, each with a distinct kernel size. Following the
convolutional branches, the PoolFormer block from [14]]
is applied, facilitating non-parametric token mixing, and
improving the model’s ability to capture important details
across different spatial resolutions. Following the convolu-
tional branches, the PoolFormer block from [[14] is applied,
facilitating non-parametric token mixing, and improving the
model’s ability to capture important details across different
spatial resolutions. Pooling, in traditional architectures, is
typically used to downsample feature maps and reduce di-
mensionality, often at the cost of losing fine-grained spa-
tial information. In contrast, the PoolFormer module re-
tains and aggregates multi-scale features effectively, which
is crucial for accurately detecting variations in maize dis-
ease symptoms. Unlike conventional pooling methods, which
may overlook subtle spatial details, PoolFormer ensures that
both local and global dependencies are captured, thereby
improving model robustness in agricultural image analysis.
This makes it particularly beneficial in the context of maize
disease classification, where subtle differences in symptoms
can be the key to accurate diagnosis. This approach is par-
ticularly beneficial for handling the diverse presentation of
maize diseases, such as variations in lesion textures and
spot sizes, making the model more robust to subtle visual
changes [[15]. Moreover, many existing models rely on pre-
trained backbones without considering that the deeper layers
of these networks tend to capture domain-specific features
[16] [17], which may not generalize well to different tasks,
such as maize disease detection. To address this, we trun-
cate the pretrained backbone, removing the layers closest
to the output while retaining the initial layers responsible
for extracting generic features. This adjustment ensures the
network remains flexible and capable of generalizing across
different domains, improving its performance in real-world
applications [18§].

A. MOTIVATION AND CONTRIBUTIONS

The classification of maize diseases based on visual leaf
symptoms presents unique challenges that we address in
this study. Variability in leaf images due to factors such as
lighting conditions, disease severity, and plant growth stages
complicates the generalization of deep learning models.
Moreover, traditional models often rely on pre-trained back-
bones without accounting for their limitations in domain-
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specific applications. For instance, deeper layers tend to
capture highly specialized features that may not transfer well
to tasks like disease classification, which requires both local
and global context understanding. To this end, we propose a
novel architecture that effectively handles these complexities
by introducing a novel approach to disease classification.

Our work aims to provide a solution to the common chal-
lenges in maize disease detection, particularly focusing on
balancing computational efficiency, feature extraction across
multiple scales, and ensuring interpretability. The Multi-
Scale Convolutional PoolFormer block is designed to pro-
cess multi-scale information, capturing both local and global
dependencies, which is crucial for addressing the variations
in disease presentation, such as differences in lesion texture
and spot size. Furthermore, by truncating the MobileNetV2
backbone and retaining only the initial layers responsible for
capturing generic features, we improve the model’s ability to
generalize across domains, focusing on low-level representa-
tions that are more universally applicable to diverse tasks.

The main contributions of this work are summarized as
follows:

1) We propose a novel architecture that integrates a
truncated MobileNetV2 backbone with a Multi-Scale
convolutional PoolFormer block. This custom block
captures multi-scale information using parallel convo-
lutional layers with varying kernel sizes, significantly
improving the model’s ability to differentiate between
subtle variations in disease presentation.

2) Our model incorporates a non-parametric token mixing
mechanism using PoolFormer module, which enhances
global feature extraction without the computational
overhead of traditional attention mechanisms. This al-
lows the model to remain lightweight while achieving
high performance, making it suitable for real-time agri-
cultural applications.

3) We address the issue of class imbalance by applying
data augmentation strategies specifically designed for
under-represented classes, such as gray leaf spot. These
strategies ensure that the model generalizes well across
all disease categories, resulting in more balanced and
accurate predictions.

4) We conduct extensive evaluations on publicly available
maize disease dataset, demonstrating that our model
outperforms existing approaches in terms of both accu-
racy and computational efficiency. The model’s design
enables real-time diagnostic capabilities in agricultural
systems.

5) We employ Grad-CAM visualizations to highlight the
regions of the input images that most influence the
model’s predictions. This enhances interpretability and
trust, providing valuable insights for agricultural pro-
fessionals when diagnosing diseases based on leaf
symptoms.

VOLUME 4, 2016

Il. RELATED WORK
Automated plant disease recognition has been a significant
topic, and many Al-based methods have been developed for
this task. With the advent of machine learning, researchers
have extensively applied it to automate plant disease identi-
fication [[19]], [20]. Traditional machine learning approaches
have also been used to automate this task. For instance, the
authors of [21] used pattern recognition algorithms based
on image-processing technology to identify alfalfa leaf dis-
eases. Their study integrated clustering algorithms, such as
K-means and fuzzy C-means, with supervised classification
algorithms like SVM, achieving high accuracy in disease
recognition. Similarly, in [22]], the authors proposed a novel
approach for cucumber disease recognition using Global-
Local Singular Value Decomposition (GL-SVD) combined
with SVM, which showed improved performance in rec-
ognizing cucumber leaf diseases. Additionally, [23]] applied
SVM in detecting sugarcane borer diseases by using image
processing techniques and grid search methods to optimize
parameters, achieving a 96% accuracy rate in detecting dis-
eased and healthy sugarcanes. Moreover, Hamdani et al.
[24] proposed a color histogram-based approach to detect oil
palm leaf diseases. The authors used features from multiple
color spaces (RGB, L*a*b, HSI, and HSV) and applied
Principal Component Analysis (PCA) for feature reduction
before classification with an artificial neural network (ANN),
achieving an accuracy of 99.67%. Singh and Misra [25]]
utilized image segmentation and soft computing techniques,
including genetic algorithms, to detect plant leaf diseases,
demonstrating the effectiveness of automated approaches for
early disease identification. Islam et al. [26] presented a
potato disease detection system using image segmentation
and a multiclass SVM, which achieved 95% classification
accuracy on the PlantVillage dataset. This work showcases
the strength of SVM-based approaches in handling multiclass
classification problems in plant disease detection. Finally,
Omrani et al. [27] employed radial basis function-based
support vector regression (SVR) for detecting apple leaf
diseases. Their method utilized K-means clustering for seg-
mentation and outperformed ANNSs in disease classification.
While traditional machine learning techniques have shown
success in plant disease detection, the advancement of deep
convolutional neural networks (CNNs) has transformed the
field significantly [28]]. CNNs can automatically learn hierar-
chical features from raw images, reducing the need for man-
ual feature extraction. This capability has proven particularly
useful in complex image recognition tasks, such as plant dis-
ease classification, where subtle visual patterns differentiate
healthy and diseased plants. Several studies have extensively
explored CNN-based methods for this purpose. For example,
Joseph et al. [29] reviewed various CNN models for intelli-
gent plant disease diagnosis and highlighted their potential
in enhancing crop health monitoring. Similarly, Dhaka et al.
[30] conducted a survey of CNN models applied to plant leaf
disease prediction, identifying key architectures and tech-
niques that have achieved remarkable results. Furthermore,
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Boulent et al. [31] provided an in-depth analysis of CNN
applications for automatic crop disease identification, under-
scoring the role of deep learning in precision agriculture.
These models have been shown to excel at automatically
extracting meaningful features from raw images, thereby
outperforming traditional machine learning methods. For
instance, Chen et al. [[32] demonstrated the effectiveness of
transfer learning by applying pre-trained VGGNet models to
plant disease identification. Their approach achieved notable
accuracy, even when applied to complex datasets under real-
world conditions. Moreover, Tariq et al. [33] employed the
VGG16 model enhanced with explainable Al techniques to
diagnose corn leaf diseases, achieving high accuracy while
also offering interpretable results via Layer-wise Relevance
Propagation (LRP). This combination of high performance
and transparency is crucial in agricultural applications where
trust in Al models is essential. Another compelling example
is the work by Theerthagiri et al. [34], who utilized the
SqueezeNet architecture for maize leaf disease detection.
Their model, optimized for fewer parameters while maintain-
ing high precision, achieved an accuracy of 97% across vari-
ous maize disease classes, including blight, rust, and grey leaf
spot. This work highlights the potential of lightweight mod-
els like SqueezeNet in resource-constrained environments
where computational efficiency is a priority. In addition to
purely deep learning approaches, several hybrid methods
have successfully combined CNNs for feature extraction
with traditional machine learning classifiers to improve plant
disease recognition. For example, Al-Gaashani et al. [35]
leveraged transfer learning and feature extraction from CNN
models like MobileNetV2 and ResNet50V2, followed by
a Gravitational Search Algorithm (GSA) to optimize these
features, which were then passed to a Multinomial Logistic
Regression (MLR) classifier for final disease classification,
achieving a precision of 99.2%. Similarly, Al-Gaashani et
al. [36] employed feature extraction from MobileNetV2 and
NASNetMobile, reduced dimensionality using kernel PCA,
and classified tomato leaf diseases using traditional classi-
fiers like Random Forest and SVM, achieving high accuracy.
Furthermore, Dash et al. [37] utilized deep features extracted
by DenseNet201 and applied an optimized SVM for maize
disease classification, achieving a classification accuracy of
94.6%.

While CNNs have demonstrated impressive success in
plant disease detection, they face certain limitations when ap-
plied to real-world scenarios. Specifically, traditional CNNs
often struggle to differentiate between critical and irrele-
vant features within complex images. Standard CNNs apply
convolutional operations uniformly across the entire image,
which may lead to equal attention being given to both signif-
icant and insignificant regions. This can result in noise or ir-
relevant details affecting the classification outcome, reducing
the model’s accuracy and generalization ability [38]], [39]].

To mitigate these shortcomings, attention mechanisms
have been introduced in CNN architectures, enabling the
models to focus on the most important regions of an image
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while suppressing irrelevant areas [40]. This is particularly
vital in plant disease detection, where distinguishing between
healthy and diseased sections of a leaf is often subtle but cru-
cial. For instance, Albahli et al. [39] implemented a spatial-
channel attention mechanism in their Efficient Attention
Network (EANet), which significantly improved accuracy
by reducing the impact of background noise in maize crop
images. Similarly, Karthik et al. [41]] embedded an attention
mechanism within a residual CNN to enhance the detection
of disease-specific regions in tomato leaves, leading to better
classification performance. Recent developments have fur-
ther integrated attention mechanisms with CNNs to address
the complexities of plant disease classification. For exam-
ple, Zhao et al. [45] proposed the RIC-Net model, which
combines Inception and residual blocks with an embedded
attention module to accurately classify diseases in corn,
potatoes, and tomatoes. This fusion of attention and multi-
scale feature extraction contributed to high classification
accuracy. Additionally, Chen et al. [43]] leveraged lightweight
attention networks in rice disease detection, achieving robust
performance even under challenging backdrop conditions.
Furthermore, Lei Chen et al. [44] introduced an improved
domain adaptation approach, incorporating a novel atten-
tion mechanism to handle discrepancies between source and
target domains in rice disease image recognition, achieving
significant improvements in accuracy under small sample
scenarios. These advancements demonstrate the critical role
of attention mechanisms in enhancing the effectiveness of
CNNs for plant disease detection, helping models focus on
key areas and improving both classification accuracy and
robustness across various conditions [42].

While CNNs equipped with attention modules have en-
hanced the ability to focus on the most relevant features in
plant disease detection, they still face limitations in capturing
long-range dependencies and global context, especially in
complex image scenarios. Vision Transformers (ViTs) have
emerged as a more effective solution, offering the ability to
model both local and global features through self-attention
mechanisms. Unlike traditional CNNs that rely on convolu-
tions and attention modules to extract local features, ViTs
segment images into patches and apply self-attention to
model the relationships between patches, making them better
suited for capturing long-range dependencies.

Karthik et al. [46]] demonstrated the potential of this ap-
proach in their dual track deep fusion network, which inte-
grates the Swin Transformer with a depthwise feature pyra-
mid for citrus disease classification, achieving an accuracy of
99.2%. Similarly, Guo et al. [47]] proposed the Convolutional
Swin Transformer (CST) for classifying plant diseases based
on type and severity, which reached 98.5% accuracy, further
proving the effectiveness of Transformers in processing spa-
tial information. Pacal [48] explored a Vision Transformer
model for maize leaf disease detection, leveraging a large
dataset and achieving an impressive 99.5% accuracy, while
Li et al. [49] introduced LMBRNet for tomato leaf disease
classification, incorporating Vision Transformers and resid-
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ual connections to achieve 99.7% accuracy. Jin et al. [50]]
utilized a multiple attention transformer method for super-
resolution in grape disease recognition, which significantly
enhanced model performance in detecting subtle disease
markers, achieving high accuracy. Zhou et al. [51] presented
a residual-distilled transformer for rice leaf disease identi-
fication, demonstrating how self-attention improves perfor-
mance, achieving an accuracy of 98.3%. Li et al. [52]] applied
a spatial convolutional self-attention transformer module for
strawberry disease classification in complex backgrounds,
reaching 98.7% accuracy. Finally, Gole et al. [53] devel-
oped TrIncNet, a lightweight Vision Transformer network for
identifying plant diseases, achieving competitive accuracy
with fewer parameters and making it efficient for deployment
in resource-constrained environments. Furthermore, Thakur,
et al. [54] proposed a hybrid model that combines CNNs and
vision transformers for plant disease detection, achieving an
accuracy of 98.86% on the PlantVillage dataset by leveraging
the feature extraction strengths of both models. Similarly,
Thai et al. [55] introduced FormerLeaf, an efficient ViT-
based model that achieved superior performance in cassava
leaf disease detection by optimizing attention heads in each
transformer layer, thereby reducing model complexity while
maintaining high accuracy. These approaches demonstrate
the growing trend of incorporating transformer-based archi-
tectures to further enhance the accuracy and robustness of
plant disease detection systems.

While the ViT architecture and its variants have signif-
icantly advanced plant disease classification by leveraging
attention mechanisms for token mixing, these methods are
often computationally expensive, especially when process-
ing large datasets. Recent works, such as [46]-[49], have
demonstrated the power of hybrid approaches that combine
convolutional and transformer-based models to enhance fea-
ture extraction and classification accuracy. However, these
approaches still rely on computationally intensive attention-
based token mixers, which limit their efficiency. To address
these limitations, the PoolFormer block was introduced in
[55]l, offering a simplified yet highly effective feature map
mixing strategy that replaces attention mechanisms with non-
parametric pooling operations. This model, built upon the
MetaFormer architecture, demonstrated competitive perfor-
mance across various vision tasks with fewer parameters and
reduced computational complexity compared to traditional
attention-based transformers. By utilizing the PoolFormer
block, our proposed model incorporates the advantages of
MetaFormer’s general architecture while ensuring efficient
and scalable feature extraction for plant disease classifica-
tion.

lll. MATERIALS AND METHODOLOGY

This section delineates the comprehensive architecture of the
proposed model, together with the dataset utilized for training
and testing, encompassing the preprocessing and augmenta-
tion techniques implemented. This study concentrates on the
categorization of maize leaf diseases. We detail the integra-
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tion of a truncated MobileNetV2 backbone with the novel
Multi-Scale convolutional PoolFormer block, which lever-
ages PoolFormer modules for efficient Feature map mixing.
The objective is to achieve a compromise between collecting
multi-scale features and guaranteeing computing efficiency,
making the model suitable for real-time agricultural applica-
tions. Furthermore, proper dataset preparation, especially in
the context of handling class imbalance, is crucial to ensuring
balanced and robust model performance.

A. DATASET DESCRIPTION

The original dataset utilized for this study is the Maize Leaf
Disease Dataset, obtained from Kaggle [56]. This dataset
contains four distinct classes: blight, common rust, gray
leaf spot, and healthy maize leaves. The dataset distribu-
tion for both the training and testing sets is provided in
Table [I] The images were curated from two major datasets,
PlantVillage and PlantDoc, ensuring that irrelevant and low-
quality images were excluded [57]], [58]. To address the class
imbalance issue, particularly with gray leaf spot being under-
represented, different augmentation strategies were applied
to balance the dataset.

TABLE 1: Details of the original dataset used for maize
disease detection

Class Training Images  Testing Images
Blight 975 171
Common Rust 1111 195
Gray Leaf Spot 488 86
Healthy 988 174
Total 3562 626

B. PREPROCESSING AND RESIZING

The original images from the dataset were resized to 224 x
224 pixels, aligning with the input size required by most
pre-trained deep learning models. This resizing ensures com-
patibility with architectures such as MobileNetV2, which
has been extensively used for plant disease classification
tasks. Normalization was also applied to the images, using
mean and standard deviation values of {0.485, 0.456, 0.406}
and {0.229, 0.224, 0.225}, respectively. These values are
standard for ImageNet-pretrained models and help speed up
convergence during training while improving generalization.
The dataset was split into training and test sets, with augmen-
tation applied exclusively to the training set, ensuring that the
test set remained untouched for unbiased evaluation.

C. DATA AUGMENTATION AND CLASS BALANCING

To address the class imbalance, we applied data augmenta-
tion to the training set. For all classes except the gray leaf
spot, five augmented images were generated for every origi-
nal image. For the gray leaf spot, which had the fewest sam-
ples, 10 augmented images per original image were generated
to ensure class balance. The augmentation process employed
a variety of techniques to simulate real-world variations in
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image conditions. These techniques included random rota-
tions, flips, brightness and contrast adjustments, motion blur,
and grid distortion. The use of these augmentations increased
the diversity of the training data and enhanced the model’s
ability to generalize to unseen conditions. The three different
scenarios for the dataset are shown in Table 2l These include
(1) the original dataset without any augmentation, (2) the
dataset with uniform augmentation across all classes, and
(3) the dataset with augmentation applied with additional
handling for the less-represented class.

TABLE 2: Dataset distribution of training part under different
scenarios

Scenario Blight Common Rust Gray Leaf Spot  Healthy
Without Augmentation 975 1111 488 988
With Uniform Augmentation 5850 6666 2928 5928
With Augmentation and Class Balancing 5850 6666 5368 5928

D. AUGMENTATION STRATEGY

Data augmentation was performed using the albumentations
library [59]], which offers a wide range of transformation
techniques suitable for image classification tasks. Augmen-
tation was selectively applied to the training data, while
the test data remained unaltered. Algorithm [I] outlines the
augmentation pipeline used during the training process.

Algorithm 1: Augmentation and Class Balancing for
Maize Disease Dataset
Input: Dyain = {(I;, y;)} -, : Training dataset, A:
Set of augmentation techniques, K: Number
of augmented images per original image
Output: D,,,: Augmented dataset
1 Initialize Dyyg < Dirain;
2 foreach (I;,y;) € Dyyain do
3 if y; = Gray Leaf Spot then
4 L K =10;
5 else
6 L K =5;
7 for k =11t0 K do
Randomly apply augmentation from .A;
I gk .A(I j );
10 Daug — Daug U {(Ij,kayj)};

11 return Dyg;

Through the thoughtful application of preprocessing and
augmentation techniques, we significantly enhanced the ro-
bustness and generalizability of our deep learning model. By
addressing the inherent class imbalance, particularly for the
under-represented categories, we ensured a more equitable
representation of the data, which in turn enabled the model
to achieve strong performance across all categories. This
approach not only improved the model’s accuracy but also
its ability to generalize to real-world data, reinforcing its ap-
plicability in practical settings. The augmentation techniques
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applied in our study are visually depicted in Figure [I] This
figure illustrates the original image at the center, surrounded
by different transformations applied to it.

iy,
! y SR T e
Random_Brightness_Contrast Flip Random_Rotate_90

_—

Transpose

PSS 0
ShiftScaleRotate

Optical_Distortion Blur Motion_Blur Grid_Distortion

FIGURE 1: Visualization of augmentation methods applied
to the dataset. The original image is at the center, with various
augmentations surrounding it.

E. PROPOSED MODEL ARCHITECTURE

The architecture of the proposed MSCPNet model is com-
posed of three essential components: a truncated Mo-
bileNetV?2 utilized for initial feature extraction, a Multi-Scale
Convolutional PoolFormer block designed for comprehen-
sive multi-scale feature aggregation, and PoolFormer mod-
ules, which efficiently manage non-parametric token mixing.
These components collectively enable the model to achieve
a balance between accuracy and computational efficiency,
making it particularly suitable for deployment in resource-
constrained environments. The overall structure of the pro-
posed model is illustrated in Figure 3] The overall process of
our approach encompasses essential steps, including dataset
preparation—comprising augmentation, normalization, and
resizing—subsequently followed by model training and eval-
uation. The MSCPNet model is trained in conjunction with
pre-trained models, and their performance is evaluated across
different metrics. The whole methodology of our suggested
approach is illustrated in Figure 2] Moreover, the Grad-CAM
visualization is further employed to analyze the interpretabil-
ity of the model predictions, as depicted in Figure [

1) Multi-Scale Convolutional PoolFormer Block

The Multi-Scale Convolutional PoolFormer Block is de-
signed to capture features at multiple spatial scales by ap-
plying convolutional filters with different kernel sizes. The
block includes four parallel branches, where three branches
apply convolutions with kernel sizes 2 x 2, 3 x 3, and
5 x 5 respectively, followed by PoolFormer modules, and one
branch applies a 1 x 1 convolution without any PoolFormer
module.
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FIGURE 2: Flowchart of the complete methodology

These operations are represented as follows:
F, = Pk(Convkxk(Fr)), ke {2,3,5},

where F, is the reduced feature map from the truncated

MobileNetV2 backbone, Convyxj represents the convolu-

tional operation with a kernel size of k, and Pj, denotes the

PoolFormer operation applied to the resulting feature map.
The 1 x 1 convolution branch is represented as:

Fi;1 = Convyy (F,)

After applying these operations in parallel, the resulting
feature maps Fo, F3, F5, and F1,; are concatenated along
the channel dimension:

Fconcat = Concat(Flmla F27 F37 F5)

VOLUME 4, 2016

This concatenation operation aggregates the multi-scale in-
formation from all branches.

After concatenation, the merged feature map is passed
through a final 1 x 1 convolution, represented as:

Fmerged = COHV1 x1 (Fconcat)

This 1 x 1 convolution reduces the dimensionality of the
concatenated feature map, projecting the high-dimensional
representation into a more compact form, which is more
suitable for downstream tasks like classification.

Finally, the output is normalized using a Layer Normaliza-
tion operation:

Fouput = LayerNorm(Fnerged)
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This normalization step ensures that the feature map is well-
conditioned and stabilizes the training process. The resulting
feature map Foupu is then passed to the final classification
layers.

2) Classification Head

The classification head consists of adaptive average pooling
and two fully connected layers. The pooled features are
flattened and passed through the fully connected layers:

Fpool = GAP(Fﬁna])
zZ, = ReLU(Wleool)
9= Wsz

Where g represents the predicted class probabilities for maize
disease categories, including Blight, Common Rust, Gray
Leaf Spot, and Healthy.

The integration of the Multi-Scale Convolutional Pool-
Former block with the truncated MobileNetV2 backbone pro-
vides a balanced approach to feature extraction and computa-
tional efficiency. Truncating MobileNetV2 reduces the com-
plexity of the model without sacrificing the critical low-level
features required for accurate maize disease classification.
At the same time, the Multi-Scale ConvPoolFormer block
addresses the limitations of traditional CNNs in capturing
global dependencies by leveraging multi-scale convolutions
and PoolFormer blocks, which combine multi-scale feature

8

aggregation with efficient feature maps mixing. The use of
non-parametric operations in the PoolFormer module ensures
that token mixing is performed without the high computa-
tional cost associated with attention mechanisms, preserving
the model’s ability to capture contextual dependencies in a
computationally efficient manner. By capturing information
across different spatial scales, this architecture enhances the
model’s ability to generalize to various maize disease pat-
terns. Furthermore, the PoolFormer module ensures that the
model remains computationally lightweight, making it ideal
for real-world deployment in resource-constrained environ-
ments, such as small farms or mobile diagnostic applications.

IV. RESULT AND DISCUSSION

In this section, we present the experimental setup, the out-
comes of our proposed model, and an ablation study to assess
the impact of different components. Additionally, we provide
a comparative evaluation of our model’s performance with
other existing methodologies.

A. EXPERIMENTAL CONFIGURATION

All experiments were conducted on a Windows 10 machine
with a 64-bit architecture powered by an Intel64 processor
(Family 6, Model 183, Stepping 1). The system also fea-
tured an NVIDIA GeForce RTX 3090 GPU, enabling GPU-
accelerated training. The software environment consisted of
Python 3.10.14, integrated with key libraries such as NumPy
(v1.24.3), OpenCV (v4.10.0), PyTorch (v2.3.1), Torchvision
(v0.18.1), Matplotlib (v3.9.0), Seaborn (v0.13.2), and Scikit-
learn (v1.5.0). CUDA version 11.8 and cuDNN version 8700
were utilized to optimize GPU-based computations, ensuring
that the deep learning workflows were efficient and repro-
ducible.
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Algorithm 2: MSCPNet for Maize Disease Classification

Input: X € REXWX3: Input maize leaf image
Output: j) € R™-classes: predicted class probabilities
1 Step 1: Feature Extraction
o Load pre-trained MobileNetV?2 and truncate after a certain layer.
« Extract base feature map:

F}, + MobileNetV2(X)

Step 2: Channel Reduction
e Apply 1 X 1 convolution to reduce feature map dimensions:

F, «+ Convyx1(Fyp)

Step 3: Multi-Scale Convolution and PoolFormer Application

o Apply multi-scale convolutions and PoolFormer blocks:
F Pk(COHVka(FT))7 ke {2,3,5}

o Apply 1 x 1 convolution branch in parallel:
Flml L COl’lVl x1 (FT)

Step 4: Feature Concatenation
« Concatenate the outputs from all convolution branches:

Fconcat — Concat(Fg, F37 F57 Fl:};l)

Step 5: Apply 1 x 1 convolution and Layer Normalization
e Apply 1 x 1 convolution to reduce dimensions of concatenated features:

Fﬁnal — COIlVl x1 (Fconcal)

o Apply layer normalization:
Fenn < LayerNorm(Fipa)

Step 6: Global Average Pooling and Classification
o Perform global average pooling on the normalized features:
F oo < GAP(Fenn)
« Flatten the pooled features and pass through fully connected layers:
z1 <+ ReLU(W Fpo1), 3+ Waz;

Output: Return predicted class probabilities §.

B. PERFORMANCE METRICS

To assess the performance of the model, we utilized a range
of evaluation metrics, including accuracy, precision, recall,
Fl1-score, and the Matthews Correlation Coefficient (MCC).
These metrics provide a comprehensive evaluation of the (TPxTN)—(FP x FN)

Precision x Recall
Fi-S =2 X 4
1-Score Precision + Recall “)

classification tasks and are defined mathematically as fol- MCC = \/(T P+ FP)(TP + FN)(TN + FP)(TN + FN)
lows: 5)
Where TP refers to True Positives, T'N refers to True

Accuracy = TP+TN (1) Negatives, I'P refers to False Positives, and F'N refers to
TP+TN+FP+FN False Negatives.

TP In addition to the above metrics, we employed the

Precision = ——— 2) Precision-Recall curve to illustrate the balance between pre-

TP+ FP cision and recall at different thresholds, which is especially

TP helpful for imbalanced datasets. The area under this curve,

Recall = TP+ FN (3) known as AUC-PR, succinctly captures the model’s perfor-
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mance in such settings. Furthermore, we used a confusion
matrix, which provides detailed insight into the model’s
classification results by highlighting true positives, true neg-
atives, false positives, and false negatives for each class.
By employing these diverse metrics, our evaluation not only
captures the overall performance of the model but also high-
lights specific strengths and potential areas for improvement,
enabling a deeper understanding of how the model performs
in various scenarios.

C. HYPERPARAMETER TUNING

In this study, we explored various hyperparameter settings to
improve the model’s performance. The hyperparameters and
their configurations are outlined in Table [d] After extensive
experimentation, the optimal settings were identified: the
Adam optimizer, a batch size of 32, a learning rate of 0.001,
and an input size of 224. These hyperparameters were found
to provide the best balance between accuracy and generaliza-
tion, while also maintaining computational efficiency.

D. TRAIN PROPOSED MODEL WITH AND WITHOUT
AUGMENTATION

The results of the study are summarized in two figures, [3]
and [6] These figures illustrate the performance of the model
under different training conditions, including variations in
data augmentation and class balancing strategies. Figure [3]
shows a comparison of the overall model performance across
three scenarios: training without augmentation, training with
augmentation, and training with augmentation combined
with class balancing for the underrepresented class. The ac-
curacy, precision, recall, F1-score, MCC, and inference time
metrics are displayed. It is evident that data augmentation
significantly improves the model’s performance. Specifically,
augmenting the training data and handling class imbalance
led to an increase in all metrics, with the highest accuracy of
97.44% achieved in the third scenario. This demonstrates that
a balanced and diverse dataset, enriched by augmentation,
is crucial for achieving better generalization in plant disease
classification tasks. Additionally, precision and recall exhibit
a noticeable increase when the augmentation is applied, with
the recall rising from 94.64% in the first scenario (without
augmentation) to 97.37% in the third scenario (augmentation
with class balancing).

The improved recall indicates that the model is better at
identifying true positive cases, and minimizing false neg-
atives. The augmentation techniques have thus enhanced
the model’s sensitivity to identifying diseased plant leaves
across different conditions. Figure [6] provides a class-wise
breakdown of precision, recall, and F1-score for each of the
four disease categories. It is clear from the figure that the aug-
mentation strategies have yielded consistent improvements
across all disease categories. For instance, the precision
for gray leaf spot increased significantly from 0.83 without
augmentation to 0.92 after augmentation and class balancing.
This suggests that the model struggles less with underrepre-
sented classes after augmentation, effectively capturing more
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nuanced features of the gray leaf spot category. For other
categories like blight and common rust, the improvements
are also noticeable, particularly in terms of recall. Blight’s
recall improved from 0.92 to 0.97, indicating that the model
is now more adept at detecting diseased blight leaves. The F1
score for each class reflects similar trends, with the highest
F1 scores observed in the augmented and class-balanced
scenario, further reinforcing the positive impact of a well-
augmented and balanced dataset. These results highlight the
importance of a comprehensive data augmentation strategy
to boost model performance across various metrics. Both
figures demonstrate that augmenting the training data not
only increases the model’s overall accuracy but also ensures
better class-wise performance, particularly for underrepre-
sented classes like gray leaf spot.

E. PERFORMANCE COMPARISON BETWEEN
MSCPNET, TRUNCATED MOBILENETV2, AND
PRETRAINED MODELS

In this section, we assess the performance of the proposed
MSCPNet model, featuring a truncated MobileNetV2 back-
bone paired with a Multi-Scale Convolutional PoolFormer
block and benchmark it against several well-established
pre-trained models. The comparison includes DenseNet121,
ResNet50, ShuffleNetV2, SqueezeNet, and MobileNetV2.
Each model was evaluated on the same dataset, and we report
the key evaluation metrics: accuracy, precision, recall, F1-
score, MCC, and inference time. The results, detailed in
Table [5] indicate that DenseNetl21 achieved an accuracy
of 95.53% with an Fl-score of 94.69%. While the model
performs exceptionally well in categorizing the healthy class
with perfect precision, recall, and F1-score, it faces difficul-
ties with certain disease categories, particularly with lower
F1-scores for some. DenseNet121 also has the highest com-
putational demand, requiring 2.86 billion FLOPs and an in-
ference time of 0.0289 seconds. On the other hand, ResNet50
provides slightly lower accuracy at 95.21%, though its infer-
ence time is faster at 0.0120 seconds. The model’s compu-
tational cost is higher at 4.10 billion FLOPs, and while its
performance across most classes is satisfactory, the F1-scores
are slightly lower for more challenging disease categories.
Optimized for efficiency, ShuffleNetV2 demonstrates a much
lower inference time of 0.0107 seconds with only 147.8
million FLOPs, making it one of the most efficient models.
However, its accuracy of 94.09% is somewhat lower, with an
F1-score of 92.82%, especially struggling in the more chal-
lenging disease categories. SqueezeNet, another lightweight
model, performs similarly with an accuracy of 93.61%, an
Fl-score of 92.12%, and an inference time of just 0.0091
seconds. Despite being the fastest model, its performance
is lower in terms of precision and recall for certain classes.
MobileNetV2, with its balance between speed and accuracy,
achieves a commendable 96.65% accuracy and an F1-score
of 96.04%. The model’s inference time of 0.0110 seconds
and 312.9 million FLOPs make it highly competitive, espe-
cially in classifying the more difficult disease categories. Our
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TABLE 4: Hyperparameter configurations

Hyperparameter Configurations
Input Size 224

Adagrad

AdamW
Optimizers SGD

Adam

RMSprop
Batch Size 8, 16,32
Learning Rate 0.01, 0.001, 0.0001
Early Stopping Patience of 10 epochs
Loss Function Categorical Cross Entropy
Number of Epochs 200

proposed MSCPNet model outperforms all the aforemen-
tioned models, achieving the highest accuracy at 97.44%, the
best F1-score of 97.04%, and an MCC of 0.9653. MSCPNet
demonstrates remarkable performance across all categories,
maintaining precision and recall near perfect for the healthy
class and showing improvements in challenging disease cat-
egories. Additionally, the computational efficiency is on par
with MobileNetV?2, with 315.2 million FLOPs and an infer-
ence time of 0.0111 seconds. The truncated MobileNetV2
achieves an accuracy of 95.85% with an F1-score of 95.09%.
It is noteworthy for its balance between performance and
efficiency, with a significantly lower inference time of 0.0083
seconds and a total FLOP count of 132.47 million, making
it the most computationally efficient model in the compar-
ison. Although it performs slightly lower in some metrics
compared to MobileNetV2 without truncation. These results
are summarized in Table [5} and confusion matrices for each
model are illustrated in Figure [7] The confusion matrices
provide insight into how well each model performs across
all categories, highlighting classification errors and success
rates. Furthermore, precision-recall curves are presented in
Figure [8] showcasing the trade-offs between precision and
recall for each model across all classes.

F. ABLATION STUDY OF MULTI-SCALE
CONVOLUTIONAL POOLFORMER BLOCK WITH
DIFFERENT BACKBONES

In this section, we analyze the effectiveness of the pro-
posed Multi-Scale Convolutional PoolFormer block by in-
tegrating it with different pre-trained backbones, including
DenseNet121, ResNet50, ShuffleNetV2, SqueezeNet, and
MobileNetV2. The purpose of this ablation study is to high-
light the performance improvements across various metrics
such as accuracy, precision, recall, Fl-score, MCC, and
inference time when the proposed block is added to these
backbones. As shown in Table[6] the inclusion of the MSCP-
Net block led to notable improvements in accuracy for all
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the backbones, although in some cases there was a slight
increase in inference time. For instance, DenseNetl121, as
a standalone model without the proposed block (discussed
in the previous section), achieved an accuracy of 95.53%
and an inference time of 0.0289 seconds. When the pro-
posed block was incorporated, the accuracy improved to
95.85%, although the inference time slightly increased to
0.0302 seconds. Similarly, ResNet50 saw an accuracy in-
crease from 95.21% to 95.53%, with a corresponding in-
crease in inference time from 0.0120 seconds to 0.0180
seconds. The lightweight architectures, such as ShuffleNetV2
and SqueezeNet, also benefited from the inclusion of the
proposed block. ShuffleNetV2, for example, improved its ac-
curacy from 94.09% to 95.53%, while still maintaining a fast
inference time of 0.0150 seconds. Likewise, SqueezeNet ex-
hibited an increase in accuracy from 93.61% to 94.41%, with
an inference time of 0.0136 seconds. The most significant
performance enhancement was observed in MobileNetV2.
Without the proposed block, MobileNetV2 had an accuracy
of 96.65%, and after incorporating the Multi-Scale Convo-
lutional PoolFormer block, it achieved the best performance
across all metrics, with an accuracy of 97.28%, an F1-score
of 97.04%, and an MCC of 0.9653. The inference time was
0.0111 seconds, comparable to its standalone performance.
The proposed MSCPNet model, utilizing a truncated Mo-
bileNetV2 backbone, achieved the highest accuracy among
all models, reaching 97.44 percent. It also demonstrated
strong performance in terms of precision, recall, and F1-
score, with values of 96.76 percent, 97.37 percent, and 97.04
percent, respectively. MCC further confirmed the model’s ro-
bustness, reaching a value of 0.9653. Additionally, the model
maintained high computational efficiency, with an inference
time of 0.0111 seconds and a total of 315.2 million FLOPs,
positioning it as both fast and highly accurate. The confusion
matrices for each model, shown in Figure[9] further illustrate
the impact of the proposed block in reducing misclassifica-
tion errors. For example, DenseNet121 and ResNet50 both
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Comparison of Results for Different Training Scenarios
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FIGURE 5: Comparison of performance metrics across different training scenarios: no augmentation, with augmentation, and

augmentation with class balancing.

TABLE 5: Performance comparison of different pre-trained models, truncated MobileNetV2, and the proposed MSCPNet
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model.
Model Accuracy Precision  Recall F1-Score MCC  Inference Time (s)
DenseNet121 95.53% 94.37% 95.15% 94.69%  0.9396 0.0289
ResNet50 95.21% 93.71% 95.41% 94.37%  0.9356 0.0120
ShuffleNetV2 94.09% 92.20% 93.98% 92.82%  0.9209 0.0107
SqueezeNet 93.61% 92.13% 92.25% 92.12% 09135 0.0091
MobileNetV2 96.65% 96.26% 95.85% 96.04%  0.9542 0.0110
Truncated MobileNetV2 95.85% 95.02% 95.19% 95.09%  0.9434 0.0083
Proposed MSCPNet 97.44% 96.76 % 97.37%  97.04%  0.9653 0.0111

showed improvements in the correct classification of difficult
classes such as gray leaf spot. Moreover, the precision-recall
curves displayed in Figure 10| confirm that the addition of
the proposed block improved the AUC for each backbone,
thereby enhancing the overall performance across various
classes.

In summary, this ablation study demonstrates that the
proposed MSCPNet block consistently enhances the perfor-
mance of various backbones across all metrics, while main-
taining efficient inference times. The ability of the block to
reduce misclassification errors, as seen in the confusion ma-
trices, further solidifies its value in real-world applications.
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G. ANALYSIS OF FLOPS AND PARAMETER EFFICIENCY

In this section, we analyze the computational efficiency and
parameter usage of various backbone models, both in their
pre-trained configurations and after integrating the Multi-
Scale Convolutional PoolFormer block, which is a key com-
ponent of the proposed MSCPNet model. The evaluation
focuses on two main metrics: FLOPs and the number of
parameters, as these directly impact the model’s suitability
for real-time applications and resource-constrained environ-
ments. Figures [[T] and [T2] provide a detailed comparison of
the total FLOPs and the number of parameters for various
backbone models, both in their pre-trained configurations
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Comparison of Class-wise Results for Different Training Scenarios
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FIGURE 6: Class-wise comparison of precision, recall, and F1-score for blight, common rust, gray leaf spot, and healthy across

the three training scenarios.

TABLE 6: Performance Comparison of different backbone models with the Proposed MSCPNet block.

Backbone Model Accuracy  Precision Recall F1-Score MCC  Inference Time (s)  Total FLOPs
DenseNet121 95.85% 94.82% 95.76% 95.24% 0.9436 0.0302 3,066,045,440
ResNet50 95.53% 94.16% 94.42% 94.29% 0.9390 0.0180 4,915,031,552
ShuffleNetV2 95.53% 93.96% 95.31% 94.51% 0.9396 0.0150 318,950,600
SqueezeNet 94.41% 92.84% 93.78% 93.25% 0.9241 0.0136 1,385,824,800
MobileNetV2 97.28% 96.37% 97.03% 96.67% 0.9631 0.0181 517,634,624
Proposed MSCPNet 97.44% 96.76 % 97.37% 97.04% 0.9653 0.0111 315,258,752

and after the inclusion of the proposed Multi-Scale Convo-
lutional PoolFormer block. The FLOPs comparison, shown
in Figure [T1] highlights that lightweight models such as
ShuffleNetV2 and MobileNetV2 maintain the lowest FLOP
counts, with 147.8 million and 312.9 million FLOPs, respec-
tively, in their pre-trained forms. After adding the Multi-
Scale Convolutional PoolFormer block, these values increase
to 318.9 million for ShuffleNetV2 and 517.6 million for
MobileNetV2. Despite this increase, these models remain
suitable for real-time applications or environments with lim-
ited computational resources. More complex models, such
as DenseNet121 and ResNet50, exhibit significantly higher
FLOP counts. For instance, DenseNet121’s FLOPs increase
from 2.86 billion in its pre-trained state to 3.06 billion af-
ter incorporating the Multi-Scale Convolutional PoolFormer
block, while ResNet50’s FLOPs increase from 4.10 billion
to 4.91 billion. Although these models demand more com-
putational power, they offer superior performance in tasks

VOLUME 4, 2016

that require deep feature extraction. Interestingly, the pro-
posed MSCPNet model achieves a competitive FLOP count,
with 315.3 million FLOPs, surpassing even the modified
MobileNetV2 and ShuffleNetV2 models in computational
efficiency. This demonstrates that despite integrating multi-
scale convolutional pooling block, which typically increases
representational capacity, the MSCPNet architecture main-
tains low FLOPs while delivering notable performance im-
provements. In terms of parameter efficiency, as shown in
Figure ShuffleNetV2 and MobileNetV2 have relatively
few parameters, with 1.26 million and 2.23 million param-
eters, respectively, in their pre-trained forms. After adding
the Multi-Scale Convolutional PoolFormer block, the param-
eter count rises to 4.54 million for ShuffleNetV2 and 6.20
million for MobileNetV2. On the other hand, DenseNet121
and ResNet50 show much larger parameter counts, with
DenseNet121 increasing from 6.96 million to 10.86 million
parameters and ResNet50 increasing from 23.52 million to
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FIGURE 7: Confusion matrices for different models.

39.06 million. The proposed MSCPNet model maintains a
low parameter count of 998,084, making it highly suitable for
environments that require both high performance and param-
eter efficiency. These comparisons emphasize the significant
trade-offs between computational efficiency, representational
power, and parameter efficiency, reinforcing MSCPNet as an
attractive solution for tasks that demand both high accuracy
and resource-conscious designs.

H. EXPERIMENTATION OF MSCPNET MODEL USING
DIFFERENT HYPERPARAMETERS

In this section, we present the experimental results obtained
by evaluating our proposed MSCPNet model with different
optimizers, learning rates, and batch sizes. These experi-
ments aim to further explore the effect of various hyper-
parameters on the performance of our model and justify
the final choices for the hyperparameters used in our best-
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performing configuration.

1) Experiments with Different Optimizers

The choice of optimizer significantly influences both con-
vergence speed and model performance. We experimented
with several popular optimizers: Adagrad, Adam, AdamW,
RMSprop, and SGD. As shown in Table[7} the results reveal
that Adam achieved the best overall performance with an
accuracy of 97.44%, an F1-score of 97.04%, and an MCC of
0.9653. The SGD optimizer also performed well, providing
competitive results with an accuracy of 97.12% and an F1-
score of 96.45%. These findings suggest that Adam and
SGD are robust optimizers for this task, whereas RMSprop
and AdamW yielded slightly lower performance. Adagrad
performed the worst in terms of accuracy and Fl-score,
emphasizing the importance of carefully selecting optimizers
for achieving optimal results.
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FIGURE 8: Precision-Recall curves for different models.

confirming that 0.001 strikes a balance between fast con-

Crs. vergence and stable training, ensuring generalization without

Optimizer Accuracy Precision Recall F1-Score = MCC overfitting.

Adagrad 96.33%  95.62%  94.96%  95.26%  0.9498  TABLE 8: Performance comparison with different learning

Adam 97.44% 96.76 % 97.37% 97.04 % 0.9653 t

AdamW 96.33% 9544%  9575%  95.58% 09500  rates.

RMSprop 96.49% 95.84% 95.90% 95.87% 0.9521 - —

SGD 97.12% 96.83% 96.16% 96.45% 0.9609 Learmng Rate Accuracy Precision Recall F1-Score MCC
0.0001 96.81% 96.16% 96.10% 96.12% 0.9564
0.001 97.44% 96.76 % 97.37% 97.04% 0.9653
0.01 96.81% 95.84% 96.62% 96.20% 0.9566

2) Experiments with Different Learning Rates

We explored the impact of different learning rates on the per-

formance of MSCPNet, testing three values: 0.0001, 0.001,
and 0.01. As summarized in Table [8] the optimal learning
rate was found to be 0.001, achieving the highest accuracy
of 97.44%, an F1-score of 97.04%, and an MCC of 0.9653.
Lower and higher learning rates yielded lower performance,

VOLUME 4, 2016

3) Experiments with Different Batch Sizes
The batch size is another key hyperparameter that can influ-
ence model performance and convergence speed. We exper-
imented with batch sizes of 8, 16, and 32, as displayed in
Table[9] The results indicate that a batch size of 32 yielded the
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FIGURE 11: Total FLOPs comparison of pre-trained models
and models with the multi-scale convolutional poolformer
block. Circle sizes are proportional to flops, and the log-
arithmic scale illustrates the wide range of values. Blue
circles represent the flops of the pre-trained models, while
red circles show the flops after incorporating the multi-scale
convolutional poolformer block.
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FIGURE 12: Comparison of the number of parameters for
pre-trained models and models with the multi-scale convolu-
tional poolformer block. Circle sizes are proportional to the
number of parameters, with a logarithmic scale to accom-
modate the large range of values. Green circles represent the
pre-trained models, while red triangles represent the models
with the multi-scale convolutional PoolFormer block..

best performance, with an accuracy of 97.44%, an F1-score
of 97.04%, and an MCC of 0.9653. This suggests that larger
batch sizes allow the model to better approximate gradients,
leading to more accurate updates. While a batch size of 8
provided comparable results, it slightly underperformed in
terms of recall and F1-score.

TABLE 9: Performance comparison with different batch
sizes.

Batch Size  Accuracy Precision  Recall F1-Score  MCC
8 97.28% 96.93% 95.96% 96.39%  0.9630
16 96.49% 95.78% 96.17% 95.96%  0.9521
32 97.44% 96.76 % 97.37%  97.04%  0.9653
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I. ABLATION STUDY ON TRUNCATION OF THE
PRE-TRAINED MOBILENETV2 MODEL

An ablation study was conducted to explore the impact of uti-
lizing a truncated version of MobileNetV2. The results, pre-
sented in Table[I0] indicate that truncating the MobileNetV2
backbone and incorporating our Multi-Scale Convolutional
PoolFormer block led to notable improvements. The pro-
posed MSCPNet model, which is based on the truncated
MobileNetV2, achieved an accuracy of 97.44%, an F1-score
of 97.04%, and an MCC of 0.9653. These metrics surpass
the performance of the complete MobileNetV2 model, which
recorded an accuracy of 97.28% and an MCC of 0.9631. The
truncation of MobileNetV2 reduced computational complex-
ity, resulting in fewer FLOPs and an improved inference time
of 0.0111 seconds, enhancing both speed and efficiency. This
ablation study reveals that truncating the pre-trained model
while introducing the proposed block can lead to perfor-
mance gains in terms of both accuracy and computational
efficiency. This finding supports the hypothesis that a trun-
cated backbone, when combined with effective attention and
pooling mechanisms, is advantageous. To further assess the
impact of truncating the MobileNetV2 backbone, a detailed
analysis was performed by comparing the confusion matrices
and precision-recall curves for various models, including
the proposed MSCPNet and other pre-trained backbones.
The confusion matrices, depicted in Figures [9} illustrate the
model’s capacity to accurately classify different disease cat-
egories. Furthermore, the precision-recall curves, shown in
Figures [0} highlight each model’s performance in handling
imbalanced datasets, particularly in rare cases. The proposed
MSCPNet model, with its truncated MobileNetV2 backbone,
demonstrates improvements in precision, recall, and over-
all classification accuracy, as evidenced by both confusion
matrix and precision-recall curve analyses. These results,
along with the findings in Table [T0} confirm the enhanced
performance and generalizability of the proposed model.

TABLE 10: Ablation study on truncation of the pre-trained
MobileNetV2 model.

Model Accuracy  Precision Recall  F1-Score MCC  Inference Time (s)

Proposed MSCPNet 97.28% 96.39% 96.96% 96.39% 0.9631 0.0181
(MobileNetV2 backbone)

Proposed MSCPNet 97.44% 96.76% 97.37% 97.04% 0.9653 0.0111
(Truncated MobileNetV2 backbone)

J. GRAD-CAM VISUALIZATIONS FOR DISEASE
CLASSIFICATION

In order to gain insights into the feature learning process of
the model and its focus during classification, we employed
Gradient-weighted Class Activation Mapping (Grad-CAM)
[60] to visualize the regions of interest in the input images.
Grad-CAM generates a heatmap that highlights the areas in
the image that most contributed to the model’s decision. This
visualization allows us to interpret the attention of the model
and ensure that the network is focusing on disease-relevant
regions, such as leaf lesions and discoloration. In Figure
[13] we present a series of Grad-CAM visualizations for the
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disease classes in the maize dataset. Each disease category is
represented with both the heatmap and the overlaid heatmap
on the original image to clearly depict the regions the model
focused on. Figure [13[a) shows the results for the blight
category. The heatmap highlights a significant portion of the
diseased area, with the overlaid version clearly marking the
affected region on the leaf. Figure[I3](b) presents the common
rust category, where the heatmaps show focused attention on
the rust spots spread across the leaf surface, with the overlay
accurately mapping these areas. Figure [3|c) displays the
results for gray leaf spot, illustrating the model’s attention
to the spots spread across the leaf, showing that the model
correctly identifies the disease features. These Grad-CAM
visualizations provide transparency into the decision-making
process of the model and validate that the attention is placed
on the correct regions, improving the model’s interpretability.
This step is crucial in applications like plant disease diagno-
sis, where understanding the model’s predictions can provide
confidence in real-world deployment.

K. ERROR ANALYSIS OF MISCLASSIFIED SAMPLES

In this study, several misclassified samples were observed
during the evaluation of the model, underscoring the chal-
lenges it faced in accurately distinguishing between visu-
ally similar plant diseases. As shown in Figure [T4] the
misclassified samples include instances where the true and
predicted labels do not align, offering insights into areas
where the model struggled. A prominent source of confusion
arose between blight and common rust, as both conditions
exhibit similar visual features, such as the appearance of
brown spots and lesions on the leaves, making it difficult for
the model to differentiate between them. Additionally, some
blight cases were incorrectly predicted as Healthy, likely due
to the model’s inability to capture subtle visual cues present
in early-stage blight, where symptoms may not be as promi-
nent or distinct from healthy leaves. These misclassifications
suggest that while the model generally performed well, there
are certain instances where improvements could be made.
Enhancing feature extraction capabilities, particularly for
diseases with overlapping visual characteristics, may help in
reducing errors. Moreover, incorporating additional training
data could further aid the model in better identifying the
subtle differences between plant diseases and improving its
overall robustness.

L. COMPARISON WITH OTHER STATE-OF-THE-ART
METHODS

In this subsection, we compare the performance of our pro-
posed MSCPNet with other state-of-the-art methods for plant
disease classification using four classes from the Kaggle
repository [56]. Table [IT]presents the techniques, accuracies,
and parameter counts for the selected models. As shown in
Table [T1] traditional CNNs empowered by specific mech-
anisms like VGG16 with Layer-wise Relevance Propaga-
tion (LRP) [33]] achieve a respectable accuracy of 94.67%,
but at the cost of higher complexity. Similarly, methods
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utilizing DenseNet201 coupled with SVM [37] showed a
slightly lower accuracy of 94.6% and do not report the
parameter count, indicating a focus on hybrid techniques for
feature extraction and classification. Our proposed MSCPNet
surpasses the performance of these methods, achieving an
accuracy of 97.44% with 998,084 parameters, making it
highly efficient compared to alternative models. Notably,
MSCPNet outperforms the SqueezeNet-based method [34],
which achieves 97% accuracy, but with a slightly higher
parameter count. Additionally, the use of attention mecha-
nisms, as demonstrated by Albahli et al. [39], shows that
the integration of attention modules into CNNs can achieve
superior results, with an impressive accuracy of 98.94% but
at the expense of significantly larger model complexity of
8.23M parameters. Similarly, ResNet50 [[61]], ShuffleNetV2
[62], and MobileNetV2 [65] exhibit solid performance in
the range of 94.09% to 96.65%, but their parameter counts
range from 1.26M to 23.5M, highlighting the trade-offs be-
tween accuracy and model size. DenseNet121 [[64]], achieves
95.53% accuracy with 6.96M parameters, balancing per-
formance and complexity effectively. However, despite its
effectiveness, it still falls short of the efficiency provided
by our proposed MSCPNet. These results demonstrate that
while various deep learning models achieve competitive ac-
curacies, our proposed MSCPNet not only delivers higher
accuracy than most of these models but also maintains a
significantly lower parameter count, making it suitable for
real-world applications that require both high performance
and efficiency.

Study Dataset #Classes  Technique Accuracy  #parameters

133 Maize Dataset |56 4
137 Maize Dataset |56
34 Maize Dataset |56
139 Maize Dataset {56
61 Maize Dataset |56
(62 Maize Dataset {56
(03 Maize Dataset [S6
(65 Maize Dataset |56
164 Maize Dataset |56
Proposed MSCPNet  Maize Dataset 56

TABLE 11: Comparison of our proposed MSCPNet with
other state-of-the-art methods

VGG16 empowered by LRP 94.67% -

DenseNet201 + SVM 94.6% -

SqueezeNet based model 97% -

CNN architecture with Attention module 98.94% 8.23M
ResNet50 95.21% 23.5M
ShuffleNetV2 94.09% 1.26M
SqueezeNet 93.61% 724,548
MobileNetV2 96.65% 2.23M
DenseNet121 95.53% 6.96M
Multi-Scale Convolutional Pooling Network: 97.44% 998,084

AR R AR R R RS

M. EVALUATION OF MSCPNET ON OTHER PLANT
DISEASES

In this section, we evaluate the performance of the proposed
MSCPNet model on tomato leaf disease classification from
plantvillage dataset [66]]. The dataset contains a total of
18,494 training images and 4,885 testing images, distributed
across ten classes, as outlined in Table [[2} The MSCPNet
model was trained using the hyperparameters detailed in
Table The input size was fixed at 224 x 224 pixels, with
a batch size of 32, using the Adam optimizer with a learning
rate of 0.001. Early stopping was employed with a patience of
10 epochs to avoid overfitting, and the model was trained for
a maximum of 200 epochs. The loss function used for opti-
mization was categorical cross-entropy, which is well-suited
for multi-class classification tasks. The classification perfor-
mance metrics for the model, including precision, recall, and
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F1-score, are summarized in Table [T} The model achieved
an overall accuracy of 99.32%, with high scores across all
metrics, demonstrating its effectiveness in accurately classi-
fying various tomato plant diseases. Figure 5] displays the
precision-recall curve for each class, illustrating the strong
performance of the model in distinguishing between tomato
diseases. Additionally, the confusion matrix in Figure[I6]pro-
vides insight into the model’s classification accuracy and the
degree of confusion between classes. Furthermore, Table [T3]
presents a comparison of MSCPNet with other state-of-the-
art models from the literature.

TABLE 12: Dataset sizes for tomato disease detection

Class Training I Testing I
Tomato Bacterial Spot (Bact_Spot) 1702 425
Tomato Early Blight (Early_Blight) 1920 480
Tomato Healthy (Healthy) 1926 481
Tomato Late Blight (Late_Blight) 1851 463
Tomato Leaf Mold (Leaf_Mold) 1882 470
Tomato Septoria Leaf Spot (Septoria) 1745 436
Tomato Spider Mites (Spider_Mites) 1741 435
Tomato Target Spot (Target_Spot) 1827 457
Tomato Mosaic Virus (Mosaic_Virus) 1790 448
Tomato Yellow Leaf Curl Virus (Yellow_Leaf_Curl) 1961 490
Total 18,494 4,885
20

True: Blight, Pred: Common Rust

True: Blight, Pred: Healthy
Prob: 39.40%

True: Blight, Pred: Healthy
FIGURE 14: Misclassified samples with their true and predicted labels.

True: Blight, Pred: Common Rust

True: Blight, Pred: Healthy
Prob: 34.23%

True: Blight, Pred: Healthy

TABLE 13: Hyperparameter configurations

Hyperparameter Configurations
Input Size 224

Optimizer Adam

Batch Size 32

Learning Rate 0.001

Early Stopping Patience of 10 epochs
Loss Function Categorical Cross Entropy
Number of Epochs 200

As seen in Table[T3] the proposed MSCPNet model outper-
forms several prior models in terms of accuracy, achieving
99.32% on the tomato leaves disease from the PlantVillage
dataset [66]. This is a notable improvement compared to
the standard CNN models , which achieved an accuracy
of 98.49% with a significantly larger number of parameters
of 1.42 million. Compared to the DenseNet model [@],
which achieved 94.94% accuracy, MSCPNet demonstrates
a considerable increase in performance with fewer parame-
ters, highlighting its efficiency. Additionally, when DenseNet
was trained with synthetic images, its accuracy improved to
97.11%, yet MSCPNet still surpasses it. Another interesting
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TABLE 14: Classification performance metrics for tomato
disease detection model

Class Precision Recall Fl-score Support
Bact_Spot 0.99 1.00 0.99 425
Early_Blight 0.99 0.99 0.99 480
Late_Blight 0.99 0.99 0.99 463
Leaf_Mold 1.00 0.99 0.99 470
Septoria 0.99 0.99 0.99 436
Spider_Mites 1.00 1.00 1.00 435
Target_Spot 1.00 0.99 0.99 457
Mosaic_Virus 1.00 1.00 1.00 490
Yellow_Leaf_Curl 1.00 1.00 1.00 448
Healthy 1.00 1.00 1.00 481
Macro avg 0.99 0.99 0.99 4585
Weighted avg 0.99 0.99 0.99 4585
Accuracy 0.9932
Precision 0.9932
Recall 0.9933
F1-score 0.9932
MCC 0.9925
Total FLOPs 315,259,136
Avg Inference Time 9.489 milliseconds

Precision-Recall Curve

Precision
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—— Class Late_Blight (AUC = 1.00)
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FIGURE 15: Precision-Recall Curve for Tomato Disease
Detection Model using MSCPNet.
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FIGURE 16: Confusion matrix for tomato disease detection
model using MSCPNet.
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comparison is with the CNN model proposed by Alnamoly
et al. [69], which used depthwise separable convolutions and
soft attention mechanisms. While this model achieved an ac-
curacy of 99.04%, it required fewer parameters than MSCP-
Net. However, MSCPNet still achieved a higher accuracy
with moderate complexity in terms of parameter count, mak-
ing it a more balanced solution between accuracy and model
complexity. The LMBRNet model [49] achieved the highest
accuracy of 99.70% but at the cost of a very high number
of parameters of 4.1 million. In contrast, MSCPNet offers
a competitive accuracy while maintaining a more efficient
model with just under 1 million parameters. A recent study
by Kumar et al. used a modified MobileNetV2 with
transfer learning for tomato disease classification, achieving
99.28% accuracy with 2 classes and 3.28 million parameters.
While this model achieved comparable accuracy, MSCPNet
still provides better performance with fewer parameters. The
MSCPNet model demonstrates a superior balance between
accuracy and computational efficiency compared to other
state-of-the-art approaches, making it a promising solution
for the real-time detection and classification of plant diseases
in practical agricultural settings.

N. LIMITATIONS AND FUTURE WORK

While the proposed MSCPNet model has demonstrated
promising performance in maize disease detection, several
limitations remain that must be addressed to further enhance
its applicability and robustness. First, the evaluation of the
model has been conducted on a specific maize dataset, which
limits its generalizability to other crops and disease types.
To address this, future work should expand the dataset to
include a broader range of crops, diseases, and environmental
conditions, such as variations in lighting, occlusion, and
weather patterns. Such expansion would improve the model’s
robustness and its ability to perform reliably in diverse
agricultural settings. Additionally, while data augmentation
techniques were employed during training to increase vari-
ability, there is potential to explore more advanced augmenta-
tion methods. For example, employing generative adversarial
networks (GANs) or domain-specific transformations could
further enhance the model’s robustness against real-world
variations in disease appearance, particularly when dealing
with complex or noisy data. Moreover, while the PoolFormer
block has shown efficiency in token mixing, there is room for
improvement in capturing long-range dependencies within
the feature representations. Future research could investigate
incorporating more sophisticated attention mechanisms, or
exploring hybrid models that combine CNNs with ViTs or
other attention-based architectures. These innovations could
enhance the model’s ability to capture fine-grained, long-
range interactions and push the boundaries of accuracy and
efficiency. Finally, deploying MSCPNet in real-time agri-
cultural applications, especially in resource-constrained en-
vironments like small-scale farms, presents additional chal-
lenges. Future work will focus on optimizing the model for
real-time deployment, including reducing memory usage and
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TABLE 15: Performance comparison of MSCPNet with State-of-the-Art models

Study Dataset #Classes Technique Accuracy  #parameters
67 PlantVillage 10 CNN 98.49% 1,422,542
168 PlantVillage 10 DenseNet 94.94% 771,452
168! PlantVillage with Synthetic Images 10 DenseNet 97.11% 771,452
169 PlantVillage 10 CNN with Depthwise Separable Operation and Soft Attention 99.04% 221,594
149} PlantVillage 9 Multiple Branches Residual Net (LMBRNet) 99.70% 4.1 M
[[70] Kaggle 2 Modified MobileNetV2 with Transfer Learning 99.28% 3,284,450
Proposed MSCPNet Model PlantVillage 10 Multi-Scale Convolutional Pooling Network 99.32% 998,474

improving inference speed. These optimizations are crucial
for ensuring that the model can be applied effectively on
edge devices and mobile platforms, making it feasible for
practical, on-the-ground use.

V. CONCLUSION

In this study, we have proposed MSCPNet, a novel deep-
learning architecture for the early and accurate detection of
maize diseases, addressing the critical challenge of crop yield
loss due to delayed diagnosis. Our approach, integrating a
truncated MobileNetV2 backbone with a Multi-Scale Con-
volutional PoolFormer block, effectively captures both local
and global features at multiple scales, enhancing the model’s
ability to handle the diverse and subtle visual manifesta-
tions of maize diseases. The backbone truncation strategy
further reduces computational complexity while maintaining
the essential layers required for general feature extraction,
allowing the model to adapt across various domains. The
inclusion of non-parametric feature maps mixing through the
PoolFormer module has been shown to significantly improve
feature aggregation, offering an efficient alternative to the
traditional self-attention mechanism. This not only reduces
the computational overhead but also enables real-time per-
formance, a crucial requirement for practical deployment in
agricultural environments. The proposed MSCPNet model
achieved notable results on maize disease datasets, with an
accuracy of 97.44%, precision of 96.76%, recall of 97.37%,
Fl-score of 97.04%, and a MCC of 0.9653. These results
surpass the performance of existing methods while maintain-
ing computational efficiency, with only 998,084 parameters
and 315 million FLOPs. Additionally, MSCPNet was further
evaluated on a tomato leaf disease classification task, where
it achieved an accuracy of 99.32%, precision of 99.32%,
recall of 99.33%, and F1-score of 99.32%, demonstrating its
generalizability to other plant disease datasets. The proposed
architecture demonstrated superior performance compared to
existing methods, both in terms of accuracy and computa-
tional cost, as validated on publicly available maize disease
datasets. Moreover, the interpretability of the model was
enhanced through Grad-CAM visualizations, providing clear
insights into the regions of the image that most influence the
model’s predictions.
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