Numerical Simulation of the Spatial Structure of the Electromagnetic Field of a Microwave Discharge in a Magnetic Mirror Trap

Results of computer simulation of the structure of the electromagnetic field of a microwave discharge in a quartz bulb placed in a cylindrical resonator the plasma of which is confined by a magnetic trap are presented. The cold plasma approximation is used. The cylindrical resonator is excited through a narrow slot in the lateral wall. It is shown that the traditional model of the electron cyclotron resonance in crossed fields in the discharge under study is applicable at low electron densities. An increase in the density is accompanied by the formation of a wave propagating in the azimuthal direction from the excitation region. With a further increase in the electron density, the absorption coefficient of the wave decreases and the angular distribution of the field has the form of a standing wave.

Авторы
Номер выпуска
11
Язык
English
Страницы
1448-1452
Статус
Published
Том
49
Год
2023
Организации
  • 1 Moscow State University
  • 2 RUDN University
  • 3 Scientific Research Institute of System Analysis, Russian Academy of Sciences
Ключевые слова
ECR-discharge; open magnetic trap; plasma modeling; cold plasma approximation; COMSOL Multiphysics; atomic; molecular; Optical and Plasma Physics
Цитировать
Поделиться

Другие записи