МНОГОСТОЛБЦОВЫЕ ГЛУБОКИЕ НЕЙРОННЫЕ СЕТИ ДЛЯ КЛАССИФИКАЦИИ ИЗОБРАЖЕНИЙ

Traditional computer vision and machine learning methods have historically struggled to match human performance on tasks such as handwritten digit recognition and traffic sign recognition. However, recent advancements in artificial neural network architectures have shown promise in overcoming these limitations. This article presents a novel approach that combines biologically plausible, wide, and deep neural networks to achieve remarkable results on various image classification benchmarks. The proposed neural network architecture leverages small receptive fields of convolutional winner-take-all neurons to achieve large network depth, resembling the organization of neural layers found in mammalian visual processing systems. Graphics processing units (GPUs) are utilized for fast training, enabling the training of deep neural networks in a fraction of the time previously required on traditional central processing units (CPUs). Experimental results demonstrate the effectiveness of the proposed approach, with the method achieving near-human performance on the MNIST handwriting benchmark and outperforming humans by a factor of two in traffic sign recognition. Furthermore, the architecture improves the state-of-the-art on a variety of common image classification benchmarks. Overall, this study highlights the potential of biologically inspired neural network architectures and GPU acceleration in advancing the field of computer vision and pattern recognition, offering insights into the development of more efficient and accurate image recognition systems.

Язык
Russian
Страницы
12-15
Статус
Published
Год
2024
Организации
  • 1 Российский университет дружбы народов им. Патриса Лумумбы
Ключевые слова
компьютерное зрение; машинное обучение; распознавание рукописных цифр; распознавание дорожных знаков; искусственные нейронные сети; сверточные нейронные сети; графические процессоры (GPU); классификация изображений; нейронные сети; вдохновленные биологией; глубокое обучение; распознавание образов; computer vision; machine learning; handwritten digit recognition; traffic sign recognition; artificial neural networks; convolutional neural networks; Graphics processing units (GPUs); image classification; Biologically Inspired Neural Networks; deep learning; pattern recognition
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.