Spectral Asymptotics for Nonlocal One-dimensional Schrödinger Operator with Neumann Condition and Translation in Free Term

We consider a nonlocal differential-difference Schrödinger operator on a segment with the Neumann conditions and a translation in the free term. This translation is regarded as a nonlocal perturbation and the value of the translation is regarded as a parameter. We show that the considered operator is $m$-sectorial and its spectrum consists of discrete eigenvalues accumulating at infinity only. Our first result is the uniform in this parameter spectral asymptotics for such operator, that is, the asymptotics for the eigenvalues in their index uniformly in the translation parameter. The asymptotics exhibits a non-trivial high-frequency phenomenon generated by the translation. Our second main result says that the eigenfunctions and corresponding generalized eigenfunctions of the considered operator form a Bari basis.

Авторы
Borisov D.I. 1, 2 , Polyakov D.M. 1, 3
Издательство
Pleiades Publishing, Ltd. (Плеадес Паблишинг, Лтд)
Номер выпуска
12
Язык
English
Страницы
6476-6482
Статус
Published
Том
45
Год
2024
Организации
  • 1 Institute of Mathematics, Ufa Federal Research Center, Russian Academy of Sciences
  • 2 Peoples’ Friendship University of Russia named after Patrice Lumumba
  • 3 Southern Mathematical Institute, Vladikavkaz Scientific Center of Russian Academy of Sciences
Ключевые слова
Schrödinger operator on a segment; Neumann condition; nonlocal perturbation; translation; uniform spectral asymptotics; 2010 Mathematics Subject Classification: 34K08
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.