Some properties of zipf–mandelbrot law and hurwitz ? –function

In this paper we deal with analytical properties of the Zipf-Mandelbrot law. If total mass of this law is spread all over positive integers we come to Hurwitz ? -function. As we show, it is very natural first to examine properties of Hurwitz ? -function to derive properties of Zipf-Mandelbrot law. Using some well-known inequalities such as Chebyshev’s and Lyapunov’s inequality we are able to deduce a whole variety of theoretical characterizations that include, among others, log-convexity, log-subadditivity, exponential convexity.

Авторы
Jakšeti J. 1 , Peari D. 2 , Peari J. 3, 4
Издательство
Element d.o.o.
Номер выпуска
2
Язык
English
Страницы
575-584
Статус
Published
Том
21
Год
2018
Организации
  • 1 Faculty of Mechanical Engineering and Naval Architecture|University of Zagreb
  • 2 Catholic University of Croatia
  • 3 Faculty Of Textile Technology|University Of Zagreb
  • 4 RUDN University
Ключевые слова
Chebyshev's inequality; Hurwitz ? -function; log-convexity; Lyapunov's inequality; Zipf-Mandelbrot law
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.