Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.
In this paper, we consider the problem of finding the initial distribution for the linear inhomogeneous and nonlinear biparabolic equation. The problem is severely ill-posed in the sense of Hadamard. First, we apply a general filter method to regularize the linear nonhomogeneous problem. Then, we also give a regularized solution and consider the convergence between the regularized solution and the sought solution. Under the a priori assumption on the exact solution belonging to a Gevrey space, we consider a generalized nonlinear problem by using the Fourier truncation method to obtain rigorous convergence estimates in the norms on Hilbert space and Hilbert scale space.