Approximation of an Inverse Initial Problem for a Biparabolic Equation

In this paper, we consider the problem of finding the initial distribution for the linear inhomogeneous and nonlinear biparabolic equation. The problem is severely ill-posed in the sense of Hadamard. First, we apply a general filter method to regularize the linear nonhomogeneous problem. Then, we also give a regularized solution and consider the convergence between the regularized solution and the sought solution. Under the a priori assumption on the exact solution belonging to a Gevrey space, we consider a generalized nonlinear problem by using the Fourier truncation method to obtain rigorous convergence estimates in the norms on Hilbert space and Hilbert scale space.

Авторы
Nguyen H.T. 1 , Kirane M. 2, 3, 4 , Vo V.A. 5 , Quoc N.D.H. 6
Издательство
Birkhäuser Verlag AG
Номер выпуска
1
Язык
English
Страницы
18
Статус
Published
Том
15
Год
2018
Организации
  • 1 Applied Analysis Research Group|Faculty of Mathematics and Statistics|Ton Duc Thang University
  • 2 LaSIE|Facult des Sciences et Technologies|Universi de La Rochelle
  • 3 NAAM Research Group|Department of Mathematics|Faculty of Science|King Abdulaziz University
  • 4 RUDN University
  • 5 Faculty of General Sciences|Can Tho University of Technology
  • 6 Department of Science Management|Thu Dau Mot University
Ключевые слова
backward problem; Biparabolic equation; error estimate; regularization method
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.