Background: The spatial accuracy of microsurgical manipulations is one of the critical factors in successful surgical interventions. The purpose of this study was to create a low-cost, high-fidelity, and easy-to-use simulator for microsurgical skills training, which can be made by residents themselves at home. Methods: In response to the COVID-19 pandemic, we created a device for spatial accuracy microsurgical skills training and implemented it in our resident’s training program. We propose a design for basic and advanced models. The simulator consisted of commonly available products. Results: A low-cost, durable, and high-fidelity basic model has been developed at a total cost of <10 dollars per unit. The model allows trainees to practice the critical microsurgical skills of tool targeting in a home-based setting. Conclusion: The developed device can be assembled at an affordable price using commercially available materials. Such simulation models can provide valuable training opportunities for microsurgery residents. © 2024 Published by Scientific Scholar on behalf of Surgical Neurology International.