Generalization of cyclic refinements of Jensen’s inequality by Fink’s identity

We generalize cyclic refinements of Jensen’s inequality from a convex function to a higher-order convex function by means of Lagrange–Green’s function and Fink’s identity. We formulate the monotonicity of the linear functionals obtained from these identities utilizing the theory of inequalities for n-convex functions at a point. New Grüss- and Ostrowski-type bounds are found for identities associated with the obtained inequalities. Finally, we investigate the properties of linear functionals regarding exponential convexity and mean value theorems.

Авторы
Mehmood N. 1 , Butt S.I. 1 , Horváth L. 2 , Pečarić J. 3, 4
Издательство
Taylor & Francis
Язык
English
Страницы
51
Статус
Published
Том
2018
Год
2018
Организации
  • 1 Department of Mathematics|COMSATS|Institute of Information Technology
  • 2 Department of Mathematics|University of Pannonia
  • 3 Faculty of Textile Technology|University of Zagreb
  • 4 RUDN University
Ключевые слова
convex function; Fink's identity; green function; Grüss and Ostrowski inequality; n-Convex function at a point; Čebyšev functional
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.