International Journal on Minority and Group Rights. Том 10. 2003. С. 203-220
Units of the complex numbers algebra given by 2 × 2 matrices are shown to be composed of elementary spinors. This leads to a novel representation of any complex number in a two-dimensional orthogonal form, each direction referred to an idempotent matrix built of the spinors' components. Introduction of a "diagonal operator," a poly-index generalization of the Kronecker symbol, allows establishing equivalence of idempotent matrices and a vector description of the orthogonal axes. © 2010 Pleiades Publishing, Ltd.