Heterogeneous multi-space manipulator cooperative control in task space via off-policy reinforcement learning

Against the backdrop of on-orbit servicing engineering, space manipulator systems face increasing demands for precise and complex task execution, high-performance control, and model robustness, while existing multi-manipulator cooperative control research remains confined mainly to joint space, exhibiting limitations in both control performance and model robustness. To address these challenges, this paper first establishes a cooperative control dynamics model for heterogeneous multi-space manipulators in task space. Utilizing a combined-variable approach, the differential control equation of each agent is transformed from a coupling of multiple time-varying variables into a single time-varying variable. An easily implementable online off-policy reinforcement learning control method is developed, enabling feedback control computation without direct dependence on the analytical form of the dynamic model. By integrating this approach with a centralized training with distributed execution control strategy, asymptotic stability and global optimality of the control system are ensured, with rigorous theoretical analysis providing formal proof. Finally, simulations validate the effectiveness and advantages of the proposed algorithm. © 2025 Elsevier B.V., All rights reserved.

Авторы
Zhuang Hongji 1 , Lu Wenlong 1 , Shen Qiang 1 , Wu Shufan 1, 2 , Razoumny Vladimir Yu 2 , Razoumny Yury N. 2
Издательство
Elsevier Science Publishing Company, Inc.
Язык
English
Страницы
320-331
Статус
Published
Том
238
Год
2026
Организации
  • 1 Shanghai Jiao Tong University, Shanghai, China
  • 2 RUDN University, Moscow, Russian Federation
Ключевые слова
Multi-space manipulator; Reinforcement learning; Task space
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.