Deep Learning-Powered Traffic Prediction for Autonomous Vehicles Using Integrated Fog and Multi-Cloud Services

The proliferation of autonomous vehicles (AVs) demands efficient data transfer and low latency for optimal performance in next-generation (5G and beyond) cellular networks. This paper addresses this challenge by proposing a deep learning (DL) technique using a Bidirectional Long Short-Term Memory (BiLSTM) model to predict traffic rates for AVs in a dynamic Fog Computing environment integrated with multi-cloud services. We compare the BiLSTM model’s accuracy with a traditional unidirectional LSTM model, focusing on the impact of batch size on prediction performance. Simulation results demonstrate that the BiLSTM model significantly outperforms the unidirectional LSTM in terms of forecasting accuracy. Furthermore, an optimal batch size is identified that yields superior results. © 2025 Elsevier B.V., All rights reserved.

Авторы
Abdellah Ali R. 1 , Abd-El-Hakeem Mohamed Mohamed Abd El Hakeem 1 , Hassan Hassan A. 1 , Alsweity Malik 2 , Muthanna Ammar 2, 3 , Koucheryavy Andrey E. 2
Издательство
Springer-Verlag GmbH
Язык
English
Страницы
198-210
Статус
Published
Том
15554 LNCS
Год
2026
Организации
  • 1 Department of Electrical Engineering, Faculty of Engineering, Cairo, Egypt
  • 2 Sankt-Peterburgskij Gosudarstvennyj Universitet Telekommunikacij imeni professora Bonch-Bruevicha, Saint Petersburg, Russian Federation
  • 3 Department of Applied Probability and Informatics, RUDN University, Moscow, Russian Federation
Ключевые слова
5G and beyond; Autonomous vehicles; BiLSTM; DL; LSTM; MEC; ML; Prediction
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.