Multimodal text-emoji fusion using deep neural networks for text-based emotion detection in online communication

The task of emotion detection in online social communication has been explored extensively. However, these studies solely focus on textual cues. Nowadays, emojis have become increasingly popular, serving as a visual means to express emotions and ideas succinctly. These emojis can be used supportively or contrastively, even sarcastically, adding complexity to emotional interpretation. Therefore, incorporating emoji analysis is crucial for accurately extracting insights from social media content to support decision-making. This paper aims to investigate to what extent the usage of emojis can contribute to the automated detection of emotions in text messages with a focus on online social communication. We propose an emoji-aware hybrid deep learning framework for multimodal emotion detection. The proposed framework leverages the feature-level fusion of textual and emoji representations, incorporating conventional and recurrent neural networks, to learn the fused modalities. The proposed approach was extensively evaluated on the GoEmotions dataset with different performance metrics. The experimental results indicate that emoji features can significantly improve emotion classification accuracy, highlighting their potential for enriching emotion understanding in online social communication. © 2025 Elsevier B.V., All rights reserved.

Авторы
Kusal Sheetal 1 , Patil Shruti S. 1, 2 , Kotecha Ketan V. 1, 2, 3
Издательство
Springer Nature
Номер выпуска
1
Язык
English
Статус
Published
Номер
32
Том
12
Год
2025
Организации
  • 1 Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, India
  • 2 Symbiosis Centre for Applied Artificial Intelligence, Pune, Pune, India
  • 3 RUDN University, Moscow, Russian Federation
Ключевые слова
Deep learning; Early fusion; Emoji; Fusion; Multimodal; Text-based emotion detection
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.