Enhancing accuracy of virtual kinase profiling via application of graph neural network to 3D pharmacophore ensembles

Kinase profiling is an essential step in both hit identification and selectivity evaluation. Since in vitro testing of large chemical libraries is costly and time-consuming, a computational approach can be applied to narrow down the reasonable chemical space. In this work, we collected data from several sources and prepared a curated, comprehensive database for training machine learning (ML) models to predict selectivity towards 75 kinases. We demonstrated the usefulness of this database by preparing several ML models with various molecular representations and model architectures. Among these, a graph neural network-based model enhanced by utilizing 3D pharmacophore ensembles showed the best performance. Finally, the developed model was applied to a library of in-stock compounds to facilitate kinase-focused drug discovery. © 2025 Elsevier B.V., All rights reserved.

Авторы
Ereshchenko Alexey V. 1 , Evteev Sergei 1 , Malyshev Alexander S. 1 , Adjugim Denis 2 , Sizov Fedor 2 , Pastukhova Anna S. 2 , Terentiev Victor A. 1 , Shegai Peter V. 1 , Kaprin Andrey D. 1, 3 , Ivanenkov Yan A. 1
Издательство
Springer Science and Business Media Deutschland GmbH
Номер выпуска
1
Язык
English
Статус
Published
Номер
86
Том
39
Год
2025
Организации
  • 1 P. A. Hertsen Moscow Oncology Research Center, Moscow, Russian Federation
  • 2 Lomonosov Moscow State University, Moscow, Russian Federation
  • 3 RUDN University, Moscow, Russian Federation
Ключевые слова
3D pharmacophore modelling; Convolution neural networks; Gradient boosting; Graph neural networks; Kinase profiling
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.