The drying-rewetting of soil can increase the release of greenhouse gases over a short time period and is one of the key pathways for greenhouse gas emissions in many terrestrial ecosystems, particularly in drylands. The mechanisms underlying this pulse of greenhouse gas emissions remain nearly unknown. Here, we conducted simulated soil rewetting experiments using typical cover of dryland soils (bareland, cyanobacteria/lichen-covered soil, and moss-covered soil). The 13C, 15N, and 18O labeling techniques allowed to explore the intrinsic mechanisms of rapid carbon (C) and nitrogen (N) release from the soils following rewetting. We found that the hydroxyl radical (˙OH) was produced after soil rewetting via the rapid activation of microorganisms. The carbon dioxide (CO