Representation of solutions and its periodicity of quaternion difference equations with variable coefficients

In this paper, we investigate general solutions and periodic solutions of quaternion difference equations (QDCEs) with variable coefficients. To begin with, we provide general solutions for linear homogeneous QDCEs (LHQDCEs), an algorithm for computing the fundamental matrix and its properties, and derive general solutions for linear nonhomogeneous QDCEs (LNHQDCEs) using the variation of constants formula as well as for semilinear QDCEs (SLQDCEs) using the fixed-point theorem. Secondly, the conditions that ensure the existence of periodic solutions for LHQDCEs are presented, thereafter, periodic solutions of LNHQDCEs under different conditions are derived using the Green function and adjoint system, respectively. Moreover, we establish the existence and uniqueness of periodic solutions of SLQDCEs. Finally, several examples are presented to demonstrate the correctness of the theoretical results. © 2025 Elsevier B.V., All rights reserved.

Авторы
Lv Jiaojiao 1 , Debbouche Amar 2, 3 , Wang Jinrong 1
Издательство
Birkhauser
Номер выпуска
5
Язык
English
Статус
Published
Номер
209
Том
24
Год
2025
Организации
  • 1 Department of Mathematics, Guizhou University, Guiyang, China
  • 2 Department of Mathematics, Université 8 Mai 1945 Guelma, Guelma, Algeria
  • 3 RUDN University, Moscow, Russian Federation
Ключевые слова
Green function; Periodic solutions; Quaternion; Variable coefficients
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.