Generative AI-driven reinforcement learning for beamforming and scheduling in multi-cell MIMO-NOMA systems

This article introduces a novel generative artificial intelligence-enhanced primal–dual proximal policy optimization (GAI-PDPPO) framework for joint user scheduling and beamforming in downlink multi-cell multiple-input and multiple-output non-orthogonal multiple access (MC-MIMO-NOMA) networks. Designed to address the challenges of interference-laden environments typical in beyond the fifth generation (B5G)/sixth generation (6G) systems, the proposed method formulates a complex mixed-integer nonlinear programming problem to minimize transmit power under stringent Quality-of-Service (QoS) constraints. Unlike conventional approaches, GAI-PDPPO incorporates an invertible transformer-based actor-critic architecture capable of modeling high-dimensional channel state information and unknown-source interference. Through the integration of generative pretraining and prioritized experience replay, the framework accelerates convergence and enhances policy generalization. Extensive simulations demonstrate that GAI-PDPPO consistently outperforms standard primal–dual PPO and benchmark solutions, achieving lower power consumption and higher spectral efficiency under varying signal-to-interference-plus-noise ratio (SINR) thresholds and interference conditions. © 2025 Elsevier B.V., All rights reserved.

Авторы
Adam Abuzar Babikir Mohammad 1 , Diallo Elhadj Moustapha 3 , Muthanna Mohammed Saleh Ali 2 , Alkanhel Reem Ibrahim 4 , Muthanna Ammar 5 , Hammoudeh Mohammad Ali A. 6
Язык
English
Статус
Published
Номер
102771
Том
72
Год
2025
Организации
  • 1 Interdisciplinary Centre for Security, University of Luxembourg, Esch-sur-Alzette, Luxembourg
  • 2 Department of International Business Management, Tashkent State University of Economics, Tashkent, Uzbekistan
  • 3 School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
  • 4 Department of Information Technology, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
  • 5 RUDN University, Moscow, Russian Federation
  • 6 Department of Computer and Information Science, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
Ключевые слова
Beamforming; Multi-cell; Multiple-input and multiple-output (MIMO); Non-orthogonal multiple access (NOMA); Primal–dual; Proximal policy optimization (PPO); User generative artificial intelligence (GAI); User scheduling
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.