Soil organic and inorganic carbon pools in the Loess Plateau: New estimation, change and trade-offs

Soil carbon pool accurate estimation is important for land use management and coping with future climate change. However, the size, distribution, and drivers of soil organic (SOC) and inorganic (SIC) carbon lack precise quantification regionally. We developed ensemble machine learning models to quantify SOC, SIC, and soil total carbon (STC) stocks across the Loess Plateau using a novel and spatially explicit dataset comprising 241 sites with paired SOC–SIC measurements in the 2 m soil profiles. The Loess Plateau's soils stored 6.5 Pg C as SOC, 13.4 Pg C as SIC, and 19.9 Pg C as STC within the top 2 m, with 22 %, 16 %, and 18 % of these carbon pools distributed in the top 30 cm, respectively. Changes in SIC stocks are crucial for carbon accounting. Soil pH drives trade-offs between SOC and SIC, thereby playing a critical role in determining the contribution of SOC and SIC to net change in STC. Under future scenarios, soil acidification associated with climate change to terrestrial ecosystems will reduce Loess Plateau's STC (2 m) by 26–42 Tg C by 2100. Our study underscored the necessity of concurrently estimating changes in both SOC and SIC stocks to accurately assess soil carbon pool and formulated effective climate change mitigation strategies. © 2025 Elsevier B.V., All rights reserved.

Авторы
Wu Jianzhao 1, 2 , Deng Lei 1, 2 , KUZYAKOV Yakov V. 3, 4 , Huang Yuanyuan 5 , Song Xiaodong 6 , Nie Ming 7 , Deng Jianming 8 , Zhao Peng 9 , Liao Yang 2 , Dong Lingbo 1 , Wang Xiaozhen 1 , Li Jiwei 1 , Yang Feng 1 , Wang Bing 1 , Shangguan Zhouping 1, 2
Издательство
Elsevier B.V.
Язык
English
Статус
Published
Номер
104951
Том
253
Год
2025
Организации
  • 1 State Key Laboratory of Soil and Water Conservation and Desertification Control, Northwest A&F University, Yangling, China
  • 2 Institute of Soil and Water Conservation Chinese Academy of Sciences, Yangling, China
  • 3 Department of Agricultural Soil Science, Georg-August-Universität Göttingen, Gottingen, Germany
  • 4 RUDN University, Moscow, Russian Federation
  • 5 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
  • 6 State Key Laboratory of Soil and Sustainable Agriculture, Chinese Academy of Sciences, Beijing, China
  • 7 School of Life Sciences Fudan University, Shanghai, China
  • 8 College of Ecology, Lanzhou University, Lanzhou, China
  • 9 Chinese Academy of Sciences, Beijing, China
Ключевые слова
Carbon neutrality; Climate change; Land use types; Machine learning; Shapley additive explanation framework; Soil acidification; Soil carbon pool
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.