Designing a Russian–Chinese Omnichannel Logistics Network for the Supply of Bioethanol

This research considers an Artificial Intelligence (AI)-driven omnichannel logistics network for bioethanol supply from Russia to China. As a renewable, low-carbon transport fuel, bioethanol plays a critical role in energy diversification and decarbonization strategies for both Russia and China. However, its flammability and temperature sensitivity impose stringent requirements on transport infrastructure and supply chain management, making it a typical application scenario for exploring intelligent logistics models. The proposed model integrates information, transportation, and financial flows into a unified simulation framework designed to support flexible and sustainable cross-border (CB) logistics. Using a combination of machine learning, multi-objective evaluation, and reinforcement learning (RL), the system models and ranks alternative transportation routes under varying operational conditions. Results indicate that the mixed corridor through Kazakhstan and Kyrgyzstan achieves the best overall balance of cost, time, emissions, and customs reliability, outperforming single-country routes. The findings highlight the potential of AI-enhanced logistics systems in supporting low-carbon energy trade and CB infrastructure coordination. © 2025 Elsevier B.V., All rights reserved.

Авторы
Barykin Sergey Evgenievich 1 , Zhang Wenye 1 , Dinets Daria A. 2 , Nechesov Andrey 3 , Didenko Nikolay I. 4 , Skripnuk Djamilia F. 4 , Kalinina Olga Vladimirovna 5 , Kharlamova Tatiana L. 5 , Kharlamov A.V. 6 , Teslya Anna B. 5 , Batov Gumar Kh 7 , Makarenko Evgenii A. 8
Номер выпуска
17
Язык
English
Статус
Published
Номер
7968
Том
17
Год
2025
Организации
  • 1 Graduate School of Service and Trade, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russian Federation
  • 2 Department of Finance, RUDN University, Moscow, Russian Federation
  • 3 International AI Committee IAIC, Hong Kong, Hong Kong
  • 4 Graduate School of Business Engineering, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russian Federation
  • 5 Graduate School of Management, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russian Federation
  • 6 Department of General Economic Theory and History of Economic Thought, St. Petersburg State University of Economics, Saint Petersburg, Russian Federation
  • 7 Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences, Nalchik, Russian Federation
  • 8 Department of Business-Informatics and Management, Saint-Petersburg State University of Aerospace Instrumentation, Saint Petersburg, Russian Federation
Ключевые слова
AI-based route optimization; bioethanol supply chain; CB logistics; omnichannel logistics network; RL; sustainability assessment
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.