Functions of self-adjoint operators under relatively bounded and relatively trace class perturbations

We study the behaviour of functions of self-adjoint operators under relatively bounded and relatively trace class perturbation. We introduce and study the class of relatively operator Lipschitz functions. An essential role is played by double operator integrals. We also consider the class of resolvent Lipschitz functions. Then we obtain a trace formula in the case of relatively trace class perturbations and show that the maximal class of function for which the trace formula holds in the case of relatively trace class perturbations coincides with the class of relatively operator Lipschitz functions. Our methods also give us a new approach to the inequality (Formula presented.) for the spectral shift function (Formula presented.) in the case of relatively trace class perturbations. © 2025 Elsevier B.V., All rights reserved.

Авторы
Aleksandrov Aleksei B. 1, 2 , Peller Vladimir V. 1, 2, 3
Издательство
John Wiley and Sons Inc
Номер выпуска
9
Язык
English
Страницы
3027-3048
Статус
Published
Том
298
Год
2025
Организации
  • 1 St. Petersburg Department of V.A.Steklov Institute of Mathematics of the Russian Academy of Sciences, Saint Petersburg, Russian Federation
  • 2 Saint Petersburg State University, Saint Petersburg, Russian Federation
  • 3 Department of Mathematics, RUDN University, Moscow, Russian Federation
Ключевые слова
Besov classes; contractions; dissipative operators; double operator integrals; functions of noncommuting operators; operator Lipschitz estimates; Schatten–von Neumann classes; semispectral measures
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.