Exploring the role of density functional theory in the design of gold nanoparticles for targeted drug delivery: a systematic review

Context: Targeted drug delivery systems leveraging gold nanoparticles (AuNPs) demand precise atomic-level design to overcome current limitations in drug-loading efficiency and controlled release. Unlike previous focused reviews, this systematic analysis compares density functional theory’s (DFT) performance across multiple AuNP design challenges, including drug interactions, surface functionalization, and stimuli-responsive behaviors. DFT predicts binding energies with ~ 0.1 eV accuracy and elucidates electronic properties of AuNP-drug complexes, critical for optimizing drug delivery. For example, B3LYP-D3/LANL2DZ calculations predict a − 0.58 eV binding energy for thioabiraterone, ensuring stable chemisorption via sulfur-Au bonds, as validated by experimental binding assays. However, high computational costs restrict its application to large biomolecular systems. Emerging hybrid machine learning (ML)/DFT approaches address scalability while preserving quantum–mechanical accuracy, reducing computational costs from ~ 106 to ~ 103 CPU h for a 50 nm AuNP, positioning hybrid ML/DFT as a transformative approach for next-generation nanomedicine. Methods: This systematic evaluation covers DFT approaches including gradient-corrected (PBE), hybrid (B3LYP), and meta-GGA (M06-L) functionals, using relativistic basis sets (e.g., LANL2DZ) for Au atoms and polarized sets (e.g., 6-31G(d)) for organic ligands. Solvent effects are modeled via implicit (SMD) or explicit approaches. Time-dependent DFT (TD-DFT) analyzes localized surface plasmon resonance and frontier molecular orbitals. Multiscale approaches integrate DFT with molecular dynamics (MD) and machine learning interatomic potentials (MLIPs) to model extended systems, enabling simulations of AuNP-protein interactions for systems up to 105 atoms with ~ 0.2 eV accuracy. © 2025 Elsevier B.V., All rights reserved.

Авторы
Obijiofor Obiekezie C. 1 , Novikov Alexander S. 1, 2, 3
Издательство
Springer Science and Business Media Deutschland GmbH
Номер выпуска
7
Язык
English
Статус
Published
Номер
186
Том
31
Год
2025
Организации
  • 1 Infochemistry Scientific Center, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics University ITMO, Saint Petersburg, Russian Federation
  • 2 Saint Petersburg State University, Saint Petersburg, Russian Federation
  • 3 Research Institute of Chemistry, RUDN University, Moscow, Russian Federation
Ключевые слова
Controlled drug release; Density functional theory (DFT); Gold nanoparticles (AuNPs); ML-driven design; Targeted drug delivery
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.