The biomedical sector is constantly searching for new drugs that efficiently improve human health and well-being with minimum side effects. Bio-inspired nanomedicine has emerged as a feasible alternative to chemotherapeutic agents for diagnosis and therapy due to its safety, biocompatibility, affordability, and sustainability. Among biological sources available for green nanomedicine are plants offering the avoidance of the labor-intensive and time-consuming processes of cultivation and maintenance compared to microorganisms. With a long history of treating over a hundred health-related issues, Ferula-derived metabolites have received special consideration for combining with nanoparticles (NPs) since they have been reported to enhance the therapeutic efficiency of NPs, enable targeted drug delivery, and ensure controlled release, which make them elusive candidates for green nanotechnology. This review aimed to provide comprehensive information about the inhibitory effects of NPs carrying Ferula-originated bioactive compounds on several cancers and pathogenic bacteria. Plus, it explores the potential of these NPs in addressing different viral diseases, such as HIV, SARS-CoV2, and hepatitis. The anticancer, antibacterial, and antiviral mechanisms of action are also briefed. The valuable insights provided by this article may result in the development of designer Ferula-based NPs that satisfy the growing needs of the pharmaceutical industry for innovative and effective medications. © 2025 Elsevier B.V., All rights reserved.