Time-frequency analysis and autoencoder approach for network traffic anomaly detection

Detection of anomalies in network traffic is critical to mitigating cyber threats. This study integrates continuous wavelet transform (CWT), discrete-time Fourier transform (DTFT), short-time Fourier transform (STFT), and autoencoders to identify anomalous network behaviour. It conducts time- frequency analysis of pre-processed network traffic data such as packet size and duration, extracting meaningful features fed into an autoencoder. Reconstruction error deviations indicate anomalies like spikes or irregular oscillations. • This hybrid approach demonstrates good scalability for the real-time implementation of cybersecurity measures. Further developments can be made in autoencoder architectures to achieve their full potential in large-scale systems. • The model is robust and scalable for real-time applications, achieving 95% detection accuracy by identifying 72 anomalies. • Obtained results indicate that the approach is feasible for deploying in practical cybersecurity applications. © 2025 Elsevier B.V., All rights reserved.

Авторы
Purohit Ruchira 1, 2 , Kumar Satish Kalyana 1, 2 , Sayyad Sameer 1 , Kotecha Ketan V. 1, 2, 3
Journal
Язык
English
Статус
Published
Номер
103228
Том
14
Год
2025
Организации
  • 1 Symbiosis Institute of Technology, Pune, India
  • 2 Symbiosis Centre for Applied Artificial Intelligence, Pune, Pune, India
  • 3 RUDN University, Moscow, Russian Federation
Ключевые слова
Anomaly detection; Autoencoders; Continuous wavelet transform; Discrete-time Fourier transform; Hybrid time-frequency analysis; Network traffic; Short-time Fourier transform
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.