Averaging for stochastic perturbations of integrable systems

We are concerned with averaging theorems for ε-small stochastic perturbations of integrable equations in Rd×Tn={(I,φ)} (Formula presented.) and in R2n={v=(v1,⋯,vn),vj∈R2}, (Formula presented.) where I=(I1,⋯,In) is the vector of actions, Ij=12‖vj‖2. The vector-functions θ and W are locally Lipschitz and non-degenerate. Perturbations of these equations are assumed to be locally Lipschitz and such that some few first moments of the norms of their solutions are bounded uniformly in ε, for 0≤t≤ε-1T. For I-components of solutions for perturbations of (1) we establish their convergence in law to solutions of the corresponding averaged I-equations, when 0≤τ:=εt≤T and ε→0. Then we show that if the system of averaged I-equations is mixing, then the convergence is uniform in the slow time τ=εt≥0. Next using these results, for ε-perturbed equations (2) we construct well posed effective stochastic equations for v(τ)∈R2n (independent of ε) such that when ε→0, the actions of solutions for the perturbed equations with t:=τ/ε converge in distribution to actions of solutions for the effective equations. Again, if the effective system is mixing, this convergence is uniform in the slow time τ≥0. We provide easy sufficient conditions on the perturbed equations which ensure that our results apply to their solutions. © 2025 Elsevier B.V., All rights reserved.

Авторы
Издательство
Springer Science+Business Media B.V., Formerly Kluwer Academic Publishers B.V.
Номер выпуска
2
Язык
English
Страницы
1053-1105
Статус
Published
Том
37
Год
2025
Организации
  • 1 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, China
  • 2 RUDN University, Moscow, Russian Federation
  • 3 Institut de Mathématiques de Jussieu-Paris Rive Gauche, Paris, France
  • 4 Steklov Mathematical Institute of RAS, Moscow, Russian Federation
  • 5 UiT Norges Arktiske Universitet, Tromso, Norway
  • 6 Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russian Federation
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.