Rayleigh–Bénard Convection with Stochastic Forcing Localised Near the Bottom

We prove stochastic stability of the three-dimensional Rayleigh–Bénard convection in the infinite Prandtl number regime for any pair of temperatures maintained on the top and the bottom. Assuming that the non-degenerate random perturbation acts in a thin layer adjacent to the bottom of the domain, we prove that the law of the random flow periodic in the two infinite directions stabilises to a unique stationary measure, provided that there is at least one point accessible from any initial state. We also prove that the latter property is satisfied if the amplitude of the noise is sufficiently large. © 2025 Elsevier B.V., All rights reserved.

Авторы
Földes Juraj 1 , Shirikyan Armen R. 2, 3
Издательство
Springer Science+Business Media B.V., Formerly Kluwer Academic Publishers B.V.
Номер выпуска
2
Язык
English
Страницы
1107-1139
Статус
Published
Номер
043501
Том
37
Год
2025
Организации
  • 1 University of Virginia School of Engineering and Applied Science, Charlottesville, United States
  • 2 CY Cergy Paris Université, Cergy-Pontoise, France
  • 3 RUDN University, Moscow, Russian Federation
Ключевые слова
Boussinesq equation; Exponential mixing; Random forcing; Rayleigh–Bénard convection; Unique continuation
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.