Creation of alkaline bulk layers from mining waste is economically viable way to prevent the migration of toxic metals down the soil profile and revegetate heavy polluted soils over large areas. We have conducted perennial experiments on the revegetation of industrial barren located near the operating nonferrous smelter in humid subarctic climate. A vermiculite–lizardite material from closed phlogopite mining, containing 10% layered silicates, was used to create the alkaline sorption barrier on the sites with high level of Cu/Ni pollution and wide range of topographic wetness index (TWI). We have revealed the strong effect of TWI on metal accumulation by mineral material with the highest effectiveness for the most wet sites. At the same time, the stable Ca and Mg content over seasons revealed the prolonged material effect for the maintenance of alkalinity and macronutrient supply. Further, we demonstrate the potential of Festuca rubra, Festuca ovina, Achillea millefolium, Deschampsia cespitosa, Dactylis glomerata, Rumex acetosella, Silene suecica, and for the revegetation of mineral material in dry locations. We demonstrated the effectiveness of alkaline geochemical barrier for the accumulation of toxic metals and successful plant growth in a wide range of topographic units. © 2025 Elsevier B.V., All rights reserved.