Convolution Type Operators With Potential: Essential and Infinite Discrete Spectrum

The goal of this note is to study the spectrum of a self-adjoint convolution operator in (Formula presented.) with an integrable kernel that is perturbed by an essentially bounded real-valued potential tending to zero at infinity. We show that the essential spectrum of such operator is the union of the spectrum of the convolution operator and of the essential range of the potential. Then we provide several sufficient conditions for the existence of a countable sequence of discrete eigenvalues. For operators having nonconnected essential spectrum, we give sufficient conditions for the existence of discrete eigenvalues in the corresponding gaps of the essential spectrum. © 2025 Elsevier B.V., All rights reserved.

Авторы
Borisov Denis Ivanovich 1, 2 , Piatnitski Andrey L. 2, 3, 4 , Zhizhina Elena A. 3, 4
Издательство
John Wiley & Sons Ltd.
Номер выпуска
8
Язык
English
Страницы
8687-8695
Статус
Published
Том
48
Год
2025
Организации
  • 1 Institute of Mathematics with Computer Center of the Ufa Science Center of the Russian Academy of Sciences, Ufa, Russian Federation
  • 2 Nikol’skii Mathematical Institute, RUDN University, Moscow, Russian Federation
  • 3 Campus Narvik, UiT Norges Arktiske Universitet, Tromso, Norway
  • 4 Higher School of Modern Mathematics MIPT, Moscow, Russian Federation
Ключевые слова
convolution type operator; infinite discrete spectrum; integrable kernel; spectral problem
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.