The decision-making process to rule R&D relies on information related to current trends in particular research areas. In this work, we investigated how one can use large language models (LLMs) to transfer the dataset and its annotation from one language to another. This is crucial since sharing knowledge between different languages could boost certain underresourced directions in the target language, saving lots of effort in data annotation or quick prototyping. We experiment with English and Russian pairs, translating the DEFT (Definition Extraction from Texts) corpus. This corpus contains three layers of annotation dedicated to term-definition pair mining, which is a rare annotation type for Russian. The presence of such a dataset is beneficial for the natural language processing methods of trend analysis in science since the terms and definitions are the basic blocks of any scientific field. We provide a pipeline for the annotation transfer using LLMs. In the end, we train the BERT-based models on the translated dataset to establish a baseline. © 2025 Elsevier B.V., All rights reserved.