A biopolymer adsorbent was prepared by crosslinking chitosan (CS) and gelatin (GL) with ethylenediaminetetraacetic acid (EDTA) for the separation and recovery of three famous rare earth elements (REEs), i.e., lanthanum (La(III)), cerium (Ce(III)), and europium (Eu(III)), from water. In this adsorbent, the EDTA moiety acts as a crosslinking agent, in addition to aiding in REE adsorption via coordination sites. Various parameters, including contact time, pH, initial REE concentration, reusability, and selectivity, were investigated during the REE recovery from water. The kinetic results fit better with the pseudo-second-order (PSO) kinetics model, confirming the involvement of chemisorption and external film diffusion in the rate-determining step. The isotherm data fit the Langmuir model, indicating a homogeneous surface for REE adsorption. The rate constant (k