Optimal convergence order for multi-scale stochastic Burgers equation

In this paper, we study the strong and weak convergence rates for multi-scale one-dimensional stochastic Burgers equation. Based on the techniques of Galerkin approximation, Kolmogorov equation and Poisson equation, we obtain the slow component strongly and weakly converges to the solution of the corresponding averaged equation with optimal orders 1/2 and 1 respectively. The highly nonlinear term in system brings us huge difficulties, we develop new technique to overcome these difficulties. To the best of our knowledge, this work seems to be the first result in which the optimal convergence orders in strong and weak sense for multi-scale stochastic partial differential equations with highly nonlinear term. © 2025 Elsevier B.V., All rights reserved.

Авторы
Издательство
Springer
Номер выпуска
1
Язык
English
Страницы
421-464
Статус
Published
Том
13
Год
2025
Организации
  • 1 School of Mathematics and Statistics, Northeast Normal University, Changchun, China
  • 2 RUDN University, Moscow, Russian Federation
  • 3 School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, China
Ключевые слова
Averaging principle; Multi-scale; Optimal convergence order; Stochastic Burgers equation
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.