Solving Barcilon's inverse problems by the method of spectral mappings

In this paper, we consider Barcilon's inverse problem, which consists in the recovery of the fourth-order differential operator from three spectra. The relationship of Barcilon's three spectra with the Weyl-Yurko matrix is obtained. Moreover, the uniqueness theorem for the inverse problem solution is proved by developing the ideas of the method of spectral mappings. Our approach allows us to obtain the result for the general case of complex-valued distributional coefficients. In the future, the methods and the results of this paper can be generalized to differential operators of orders greater than 4 and used for further development of the inverse problem theory for higher-order differential operators. © 2024 Elsevier B.V., All rights reserved.

Авторы
Guan Aiwei 1 , Yang Chuanfu 1 , Bondarenko Natalia P. 2, 3
Издательство
Academic Press
Язык
English
Страницы
1881-1898
Статус
Published
Том
416
Год
2025
Организации
  • 1 Department of Mathematics, Nanjing University of Science and Technology, Nanjing, China
  • 2 S.M. Nikolskii Mathematical Institute, RUDN University, Moscow, Russian Federation
  • 3 Lomonosov Moscow State University, Moscow, Russian Federation
Ключевые слова
Distribution coefficients; Inverse spectral problem; The fourth-order differential operator; Uniqueness
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.