NONNEGATIVE TENSOR DECOMPOSITION VIA COLLABORATIVE NEURODYNAMIC OPTIMIZATION

This paper introduces a novel collaborative neurodynamic model for computing nonnegative canonical polyadic decomposition (CPD). The model relies on a system of recurrent neural networks to solve the underlying nonconvex optimization problem associated with nonnegative CPD. Additionally, a discrete-time version of the continuous neural network is developed. To enhance the chances of reaching a potential global minimum, the recurrent neural networks are allowed to communicate and exchange information through particle swarm optimization (PSO). Convergence and stability analyses of both the continuous and discrete neurodynamic models are thoroughly examined. Experimental evaluations are conducted on random and real-world datasets to demonstrate the effectiveness of the proposed approach. © 2025 Elsevier B.V., All rights reserved.

Авторы
Ahmadi-Asl Salman 1, 2 , Leplat Valentin 3 , Phan Anh Huy 4 , Cichocki Andrzej S. 4, 5
Издательство
Society for Industrial and Applied Mathematics Publications
Номер выпуска
1
Язык
English
Страницы
C100-C125
Статус
Published
Том
47
Год
2025
Организации
  • 1 Lab of Machine Learning and Knowledge Representation, Innopolis University, Innopolis, Russian Federation
  • 2 RUDN University, Moscow, Russian Federation
  • 3 Innopolis University, Innopolis, Russian Federation
  • 4 Skolkovo Institute of Science and Technology, Moscow, Russian Federation
  • 5 Polish Academy of Sciences, Warsaw, Poland
Ключевые слова
canonical polyadic decomposition; neurodynamic; particle swarm optimization
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.