Multi-Dimensional Markov Chains of M/G/1 Type

We consider an irreducible discrete-time Markov process with states represented as (k, i) where k is an M-dimensional vector with non-negative integer entries, and i indicates the state (phase) of the external environment. The number n of phases may be either finite or infinite. One-step transitions of the process from a state (k, i) are limited to states (n, j) such that n ≥ k−1, where 1 represents the vector of all 1s. We assume that for a vector k ≥ 1, the one-step transition probability from a state (k, i) to a state (n, j) may depend on i, j, and n − k, but not on the specific values of k and n. This process can be classified as a Markov chain of M/G/1 type, where the minimum entry of the vector n defines the level of a state (n, j). It is shown that the first passage distribution matrix of such a process, also known as the matrix G, can be expressed through a family of nonnegative square matrices of order n, which is a solution to a system of nonlinear matrix equations. © 2025 Elsevier B.V., All rights reserved.

Авторы
Naumov Valeriy Arentevich 1 , Samouylov Konstantin Evgenevich 2
Издательство
MDPI
Номер выпуска
2
Язык
English
Статус
Published
Номер
209
Том
13
Год
2025
Организации
  • 1 Service Innovation Research Institute, Helsinki, Finland
  • 2 Institute of Computer Science and Telecommunications, RUDN University, Moscow, Russian Federation
Ключевые слова
discrete-time Markov chain; Markov chain of M/G/1 type; matrix G; system of nonlinear matrix equations
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.