A note on the NBVP with Samarskii-Ionkin condition I for elliptic equations

In the present paper, the nonlocal boundary value problem with Samarskii-Ionkin condition I for elliptic equations in a Banach space with the positive operator is investigated. The main theorems on well-posedness of this problem are established. In practice, the coercive stability estimates for solution of four types of nonlocal boundary value problems with Samarskii-Ionkin condition I for elliptic differential equations are proved. © 2025 Elsevier B.V., All rights reserved.

Авторы
Ashyralyev Allaberen 1, 2, 3 , Sadybekov Makhmud Abdysametovich 3
Издательство
Romanovsky Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan
Номер выпуска
2
Язык
English
Страницы
38-53
Статус
Published
Том
69
Год
2025
Организации
  • 1 Department of Mathematics, Bahçeşehir Üniversitesi, Istanbul, Turkey
  • 2 RUDN University, Moscow, Russian Federation
  • 3 Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
Ключевые слова
coercive stability; elliptic equations; positive operator; Samarskii-Ionkin condition; well-posedness
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.