Multi-Index Assessment and Machine Learning Integration for Drought Monitoring Using Google Earth Engine

This study advances multisensor remote sensing data fusion integrating optical (Sentinel-2, MODIS), thermal (LST), and hydrological (SMAP) sensors with climate datasets to evaluate soil moisture dynamics at five depths (0–50 cm) across nine agricultural zones (October 2021–September 2023), leveraging AI and machine learning to address data quality challenges in heterogeneous sensor inputs. Our novel AI-driven approach improved data fusion accuracy by 27% compared to conventional methods, enabling more reliable drought detection even in areas with persistent cloud cover and sensor inconsistencies. Using Google Earth Engine for spatiotemporal fusion and random forest classification for feature optimization, we demonstrate the superiority of fused multisensor indices, with vegetation condition index and normalized vegetation-soil water index achieving the highest accuracy (r = 0.56–0.59) at 10–40 cm depths, while single-sensor optical indices underperformed at 50 cm (r < 0.30). Temporal analysis revealed cumulative drought signals in standardized precipitation evapotranspiration index (3–6-month lag) and rapid surface responses in temperature condition index, emphasizing the need for adaptive sensor fusion. Land cover changes included an 18.5% reduction in surface water and a 3714.6 km2 expansion of bare ground in 2023, correlating with standardized precipitation index-based drought severity (29.8% –47.3% affected area). The framework’s AI-driven error correction and multisensor synergy provide a scalable model for drought applications, such as ecosystem resilience monitoring (integrating thermal and optical analysis) and hydrological modelling (fusing soil moisture, precipitation, and vegetation datasets). By resolving sensor inconsistencies and enhancing reliability in complex environments, this work underscores the broader relevance of multisensor fusion for drought vulnerability assessments, where land-sea interactions demand integrated sensor networks and machine learning to mitigate ecological and climatic risks. © 2025 Elsevier B.V., All rights reserved.

Авторы
Duan Xulong 1 , Aslam Rana Waqar 2 , Naqvi Syed Ali Asad 3 , Kucher Dmitry Evgenievich 4 , Afzal Zohaib 2 , Raza Danish 2 , Zulqarnain Rana Muhammad 5 , Said Yahia Fahem 6
Издательство
Institute of Electrical and Electronics Engineers Inc.
Язык
English
Страницы
16497-16516
Статус
Published
Том
18
Год
2025
Организации
  • 1 School of Urban Construction, Yunnan Open University, Kunming, China
  • 2 Wuhan University, Wuhan, China
  • 3 Department of Geography, Government College University Faisalabad, Faisalabad, Pakistan
  • 4 Department of Environmental Management, RUDN University, Moscow, Russian Federation
  • 5 Department of Mathematics, Saveetha School of Engineering, Chennai, India
  • 6 Center for Scientific Research and Entrepreneurship, Northern Border University, Arar, Saudi Arabia
Ключевые слова
Agricultural drought monitoring; data quality optimization; drought resilience; Google Earth Engine (GEE); multisensor data fusion; soil moisture dynamics
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.
Baibulatova E.A., Chenkurov Mikhail S., Korovyakova Elina Arkad’Evna, Zyryanov S.K., Ziganshina Liliya Eugenevna
Казанский медицинский журнал. Том 106. 2025. С. 454-464