Monitoring deformations of metro transit tunnels using

The article discusses application of artificial neural networks and machine learning algorithms for monitoring of deformations in subway tunnels located in complex mining and geological conditions. Particular attention is given to industrial and environmental safety, as well as modern methods for measuring crustal deformations using GPS/GLONASS technologies, geodetic, and mine surveying. The main stages of artificial neural networks operation are described, i.e. the training based on the tunnel parameters and conditions, testing, validation, and operation to predict the potential deformations. The key neural network architectures are considered such as the deep, convolutional, and recurrent networks along with their data processing capabilities. Examples are provided of artificial neural networks used for data interpolation, hazardous zone recognition, and tunnel ring monitoring. The importance of high-quality initial data, including geometric parameters, physical material properties, climatic conditions, and historical data, is emphasized. Implementation of artificial neural networks can help to promptly identify risks, predict the deformation dynamics, and classify the deformation types, enabling timely measures to prevent emergencies. © 2025 Elsevier B.V., All rights reserved.

Авторы
Meller Aleksandr D. 1, 3 , Galiyeva Rita R. 2, 4 , Kuleshova Anastasia V. 2, 4 , Petrosyan Artur K. 2, 4 , Glatko Svetlana A. 2, 5
Издательство
ООО Научно-производственная компания "Гемос Лимитед"
Номер выпуска
2
Язык
Russian
Страницы
163-166
Статус
Published
Том
2025
Год
2025
Организации
  • 1 RUDN University, Moscow, Russian Federation
  • 2 National University of Science & Technology (MISIS), Moscow, Russian Federation
  • 3 Department of Subsoil Use and Oil and Gas Engineering, RUDN University, Moscow, Russian Federation
  • 4 Department of the Energy Efficiency and Resource Saving of Indusrial Technologies, National University of Science & Technology (MISIS), Moscow, Russian Federation
  • 5 Department of Geology and Mine Surveying, National University of Science & Technology (MISIS), Moscow, Russian Federation
Ключевые слова
Artificial neural networks; Data interpolation; Geodynamics; Machine learning; Structural monitoring; Tunnel deformations
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.