Multisensor Fusion and Deep Learning Approaches for Semantic Segmentation of Glacial Lakes: A Comparative Study for Coastal Hydrology Applications

Monitoring glacial lakes is critical for assessing climate change impacts and mitigating glacial lake outburst flood risks. This study evaluates three deep learning architectures, U-Net, simple convolutional neural network (CNN), and atrous spatial pyramid pooling SegNet (ASPP SegNet), for binary semantic segmentation of glacial lakes using multisensor optical satellite imagery (Sentinel-2). Incorporating data augmentation and custom evaluation metrics (IoU, F1-score, validation loss), the results show that Simple CNN achieves the highest IoU (0.9155) and F1-score (0.9557). At the same time, ASPP SegNet demonstrates superior generalization with the lowest validation loss (0.03337). U-Net also delivers a reliable performance, albeit slightly lower. Visual and quantitative assessments highlight the advantage of multiscale, context-aware architectures in delineating fragmented lake boundaries. This comparative study provides practical guidance for deep learning model selection in remote sensing-based glacial and coastal hydrology monitoring. Future work will explore temporal modeling, multiclass segmentation, and the integration of optical, radar, and elevation data for improved resilience. © 2025 Elsevier B.V., All rights reserved.

Авторы
Xue Lingling 1 , Khan Asad 2 , Haseeb Muhammad 3 , Aqnouy Mourad 4, 5 , Ahmad Dawood 3 , Ghodhbani Refka 6 , Kucher Dmitry Evgenievich 7 , Kucher Olga D. 7
Издательство
Institute of Electrical and Electronics Engineers Inc.
Язык
English
Страницы
15304-15317
Статус
Published
Том
18
Год
2025
Организации
  • 1 College of Energy Engineering, Huanghuai University, Zhumadian, China
  • 2 School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, China
  • 3 Department of Space Science, University of the Punjab, Lahore, Pakistan
  • 4 Geotechnics and Geohazards (LR3G), Université Abdelmalek Essaadi, Tetouan, Morocco
  • 5 Faculty of Sciences and Techniques, Université Moulay Ismaïl, Meknes, Morocco
  • 6 Center for Scientific Research and Entrepreneurship, Northern Border University, Arar, Saudi Arabia
  • 7 Department of Management, RUDN University, Moscow, Russian Federation
Ключевые слова
Atrous spatial pyramid pooling SegNet (ASPP SegNet); coastal monitoring; deep learning; glacial lake; remote sensing; semantic segmentation; Sentinel-2 imagery; simple convolutional neural network (CNN); U-Net
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.