Solvability of some integro-differential equations with the logarithmic Laplacian

We address the existence in the sense of sequences of solutions for a certain integro-differential-type problem involving the logarithmic Laplacian. The argument is based on the fixed point technique when such equation contains the operator without the Fredholm property. It is established that, under the reasonable technical conditions, the convergence in (Formula presented.) of the integral kernels yields the existence and convergence in (Formula presented.) of the solutions. © 2025 Elsevier B.V., All rights reserved.

Авторы
Vougalter Vitali 1 , Volpert Vitaly A. 2, 3
Издательство
Taylor and Francis Ltd.
Номер выпуска
6
Язык
English
Страницы
1021-1035
Статус
Published
Том
104
Год
2025
Организации
  • 1 Department of Mathematics, University of Toronto, Toronto, Canada
  • 2 Institut Camille Jordan, Villeurbanne, France
  • 3 RUDN University, Moscow, Russian Federation
Ключевые слова
integral kernel; logarithmic Laplacian; non-Fredholm operators; Solvability conditions
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.