Accurate V2X traffic prediction with deep learning architectures

Vehicle-to-Everything (V2X) communication promises to revolutionize road safety and efficiency. However, challenges in data sharing and network reliability impede its full realization. This paper addresses these challenges by proposing a novel Deep Learning (DL) approach for traffic prediction in V2X environments. We employ Bidirectional Long Short-Term Memory (BiLSTM) networks and compare their performance against other prominent DL architectures, including unidirectional LSTM and Gated Recurrent Unit (GRU). Our findings demonstrate that the BiLSTM model exhibits superior accuracy in predicting traffic patterns. This enhanced prediction capability enables more efficient resource allocation, improved network performance, and enhanced safety for all road users, reducing fuel consumption, decreased emissions, and a more sustainable transportation system. © 2025 Elsevier B.V., All rights reserved.

Авторы
Abdellah Ali R. 1 , Abdelmoaty Ahmed 1 , Ateya Abdelhamied A. 2, 3 , Abd-El-Latif Ahmed A. 2, 4 , Muthanna Ammar 5, 6 , Koucheryavy Andrey E. 5
Издательство
Frontiers Media SA
Язык
English
Статус
Published
Номер
1565287
Том
8
Год
2025
Организации
  • 1 Department of Electrical Engineering, Faculty of Engineering, Cairo, Egypt
  • 2 College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia
  • 3 Faculty of Engineering, Zagazig, Egypt
  • 4 Department of Mathematics and Computer Science, Faculty of Science, Shibin El Kom, Egypt
  • 5 Sankt-Peterburgskij Gosudarstvennyj Universitet Telekommunikacij imeni professora Bonch-Bruevicha, Saint Petersburg, Russian Federation
  • 6 Department of Applied Probability and Informatics, RUDN University, Moscow, Russian Federation
Ключевые слова
5G and beyond; AI; BiLSTM; deep learning; GRU; LSTM; V2X
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.