Exponential Stability of the Flow for a Generalized Burgers Equation on a Circle

The paper deals with the problem of stability for the flow of the 1D Burgers equation on a circle. Using some ideas from the theory of positivity preserving semigroups, we establish the strong contraction in the L1 norm. As a consequence, it is proved that the equation with a bounded external force possesses a unique bounded solution on R, which is exponentially stable in H1 as t → +∞. In the case of a random external force, we show that the difference between two trajectories goes to zero with probability 1. © 2024 Elsevier B.V., All rights reserved.

Авторы
Djurdjevac Ana 1 , Shirikyan Armen R. 2, 3
Издательство
Plenum Publishers
Номер выпуска
6
Язык
English
Страницы
763-772
Статус
Published
Том
285
Год
2024
Организации
  • 1 Freie Universität Berlin, Berlin, Germany
  • 2 CY Cergy Paris Université, Cergy-Pontoise, France
  • 3 RUDN University, Moscow, Russian Federation
Ключевые слова
bounded trajectory; Burgers equation; exponential stability
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.