Numerical approaches for solution of hyperbolic difference equations on circle

The present paper considers nonlocal boundary value problems for hyperbolic equations on the circle T1. The first-order modified difference scheme for the numerical solution of nonlocal boundary value problems for hyperbolic equations on a circle is presented. The stability and coercivity estimates in various Hölder norms for solutions of the difference schemes are established. Moreover, numerical examples are provided. © 2024 Elsevier B.V., All rights reserved.

Авторы
Ashyralyev Allaberen 2, 3, 4 , Hezenci Fatih 1 , Sözen Yaşar 5
Издательство
Walter de Gruyter GmbH
Номер выпуска
5
Язык
English
Страницы
723-730
Статус
Published
Том
31
Год
2024
Организации
  • 1 Department of Mathematics, Düzce Üniversitesi, Duzce, Turkey
  • 2 Department of Mathematics, Bahçeşehir Üniversitesi, Istanbul, Turkey
  • 3 RUDN University, Moscow, Russian Federation
  • 4 Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
  • 5 Department of Mathematics, Hacettepe Üniversitesi, Ankara, Turkey
Ключевые слова
Difference equations on manifolds; difference schemes; self-adjoint positive definite operator; well-posedness
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.