On a Reconstruction Procedure for Special Spherically Symmetric Metrics in the Scalar-Einstein-Gauss-Bonnet Model: the Schwarzschild Metric Test

The 4D gravitational model with a real scalar field phi, Einstein and Gauss-Bonnet terms is considered. The action contains the potential U(phi) and the Gauss-Bonnet coupling function f(phi). For a special static spherically symmetric metric ds(2)=(A(u))(-1)du(2)-A(u)dt(2)+u(2)d Omega(2), with A(u) > 0 (u > 0 is a radial coordinate), we verify the so-called reconstruction procedure suggested by Nojiri and Nashed. This procedure presents certain implicit relations for U(phi) and f(phi) which lead to exact solutions to the equations of motion for a given metric governed by A(u). We confirm that all relations in the approach of Nojiri and Nashed for f(phi(u)) and phi(u) are correct, but the relation for U(phi(u)) contains a typo which is eliminated in this paper. Here we apply the procedure to the (external) Schwarzschild metric with the gravitational radius 2 mu and u>2 mu. Using the "no-ghost" restriction (i.e., reality of phi(u)), we find two families of (U(phi),f(phi)). The first one gives us the Schwarzschild metric defined for u>3 mu, while the second one describes the Schwarzschild metric defined for 2 mu < u < 3 mu (3 mu is the radius of the photon sphere). In both cases the potential U(phi) is negative.

Авторы
Издательство
Pleiades Publishing, Ltd.
Номер выпуска
3
Язык
English
Страницы
344-352
Статус
Published
Том
30
Год
2024
Организации
  • 1 RUDN Univ, PeoplesFriendship Univ Russia, ul Miklukho Maklaya 6, Moscow 117198, Russia
  • 2 VNIIMS, Ctr Gravitat & Fundamental Metrol, Ozyornaya Ul 46, Moscow 119361, Russia
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.