On Kernels of Invariant Schrodinger Operators with Point Interactions. Grinevich-Novikov Conjecture

According to Berezin and Faddeev, a Schrodinger operator with point interactions -Delta + Sigma(m)(j=1) alpha(j) delta(x-x(j)), X = {x(j)}(1)(m) subset of R-3 , {alpha(j)}(1)(m) subset of R is any self-adjoint extension of the restriction Delta(X) of the Laplace operator -Delta to the subset {f is an element of H-2 (R-3) : f(x(j)) = 0, 1 <= j <= m} of the Sobolev space H-2 (R-3). The present paper studies the extensions (realizations) invariant under the symmetry group of the vertex set X = {x(j)}(1)(m) of a regular m-gon. Such realizations H-B are parametrized by special circulant matrices B is an element of C-mxm. We describe all such realizations H(B)with non-trivial kernels. A Grinevich-Novikov conjecture on simplicity of the zero eigenvalue of the realization H-B with a scalar matrix B = alpha I and an even m is proved. It is shown that for an odd m non-trivial kernels of all realizations H-B with scalar are two-dimensional. Besides, for arbitrary realizations (B not equal alpha I) the estimate dim(ker H-B) <= m-1 is proved, and all invariant realizations of the maximal dimension m(ker H-B) = m-1 are described. One of them is the Krein realization, which is the minimal positive extension of the operator Delta(X)

Авторы
Издательство
Pleiades Publishing, Ltd. (Плеадес Паблишинг, Лтд)
Номер выпуска
2
Язык
English
Страницы
125-129
Статус
Published
Том
109
Год
2024
Организации
  • 1 RUDN Univ, Moscow, Russia
  • 2 Bauman Moscow State Tech Univ, Moscow, Russia
Ключевые слова
Schrodinger operators with point interactions; invariant operators; Krein realization; multiplicity of zero eigenvalue
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.