Topological and geometrical properties of spaces with symmetric and nonsymmetric f-quasimetrics

The properties of spaces equipped with a topology defined by a distance function are studied. The considered distance function is not necessarily symmetric but satisfies the so-called f-triangle inequality, which is a weakened version of the usual triangle inequality. Sufficient conditions for metrizability of such spaces are proposed. A construction of a quasimetric topologically equivalent to a given f-quasimetric is proposed. © 2017 Elsevier B.V.

Авторы
Arutyunov A.V. 1, 2 , Greshnov A.V. 4, 3 , Lokutsievskii L.V. 5, 2 , Storozhuk K.V. 4, 3
Язык
English
Страницы
178-194
Статус
Published
Том
221
Год
2017
Организации
  • 1 RUDN University, Miklukho-Maklaya str. 6, Moscow, 117198, Russian Federation
  • 2 Lomonosov Moscow State University, MSU, Leninskiye Gory, Moscow, 119991, Russian Federation
  • 3 Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russian Federation
  • 4 Sobolev Institute of Mathematics, pr. Koptyuga 4, Novosibirsk, 630090, Russian Federation
  • 5 Steklov Mathematical Institute of Russian Academy of Sciences, Russian Federation
Ключевые слова
f-Quasimetric space; Metrizability; Quasimetric
Цитировать
Поделиться

Другие записи

Minasny B., Malone B.P., Mcbratney A.B., Angers D.A., Arrouays D., Chambers A., Chaplot V., Chen Z.-S., Cheng K., Das B.S., Field D.J., Gimona A., Hedley C.B., Hong S.Y., Mandal B., Marchant B.P., Martin M., Mcconkey B.G., Mulder V.L., O'rourke S. ...
Geoderma. Том 292. 2017. С. 59-86