International Journal on Minority and Group Rights. Том 10. 2003. С. 203-220
We consider a new class of narrow orthogonally additive operators in lattice-normed spaces and prove the narrowness of every C-compact norm-laterally-continuous orthogonally additive operator from a Banach–Kantorovich space V into a Banach space Y. Furthermore, every dominated Urysohn operator from V into a Banach sequence lattice Y is also narrow. We establish that the order narrowness of a dominated Urysohn operator from a Banach–Kantorovich space V into a Banach space with mixed norm W implies the order narrowness of the least dominant of the operator. © 2017, Pleiades Publishing, Ltd.