Unique determination of a system by a part of the monodromy matrix

First-order ODE systems on a finite interval with nonsingular diagonal matrix B multiplying the derivative and integrable off-diagonal potential matrix Q are considered. It is proved that the matrix Q is uniquely determined by the monodromy matrix W(λ). In the case B = B*, the minimum number of matrix entries of W(λ) sufficient to uniquely determine Q is found.

Авторы
Номер выпуска
4
Язык
English
Страницы
264-278
Статус
Published
Том
49
Год
2015
Организации
  • 1 Российский университет дружбы народов
  • 2 Institute of Applied Mathematics and Mechanics, Donetsk
Цитировать
Поделиться

Другие записи