On Decay of Entropy Solutions to Nonlinear Degenerate Parabolic Equation with Almost Periodic Initial Data

Abstract: We study the Cauchy problem for nonlinear degenerate parabolic equations with almost periodic initial data. Existence and uniqueness (in the Besicovitch space) of entropy solutions are established. It is demonstrated that the entropy solution remains to be spatially almost periodic and that its spectrum (more precisely, the additive group generated by the spectrum) does not increase in the time variable. Under a precise nonlinearity-diffusivity condition on the input data we establish the long time decay property in the Besicovitch norm. For the proof we use reduction to the periodic case and ergodic methods. © 2021, Pleiades Publishing, Ltd.

Авторы
Издательство
Pleiades Publishing
Номер выпуска
5
Язык
English
Страницы
974-988
Статус
Published
Том
42
Год
2021
Организации
  • 1 Yaroslav-the-Wise Novgorod State University, Veliky Novgorod, 173003, Russian Federation
  • 2 Peoples’ Friendship University of Russia (RUDN University), Moscow, 117198, Russian Federation
Ключевые слова
almost periodic functions; conservation laws; decay property; degenerate nonlinear parabolic equations; entropy solutions; nonlinearity-diffusivity condition; spectrum
Цитировать
Поделиться

Другие записи