Sharp spectral stability estimates via the Lebesgue measure of domains for higher order elliptic operators

We prove sharp stability estimates for the variation of the eigenvalues of non-negative self-adjoint elliptic operators of arbitrary even order upon variation of the open sets on which they are defined. These estimates are expressed in terms of the Lebesgue measure of the symmetric difference of the open sets. Both Dirichlet and Neumann boundary conditions are considered.

Авторы
Burenkov Victor I. 1 , Lamberti Pier Domenico 2
Издательство
Springer-Verlag
Номер выпуска
2
Язык
English
Страницы
435-457
Статус
Published
Том
25
Год
2011
Организации
  • 1 Peoples’ Friendship University of Russia
  • 2 Dipartimento di Matematica Pura Ed Applicata, Universit Degli Studi di Padova
Цитировать
Поделиться

Другие записи