A Note on Single-Step Difference Scheme for the Solution of Stochastic Differential Equation

This is a discuss on the application of operator approach to stochastic partial differential equations with dependent coefficients. Single step difference schemes generated by exact difference scheme for an abstract Cauchy problem for the solution of stochastic differential equation in a Hilbert space with the time-dependent positive operator are presented. The main theorems of the convergence of these difference schemes for the approximate solutions of the time-dependent abstract Cauchy problem for the parabolic equations are established. In applications, the convergence estimates for the solution of difference schemes for stochastic parabolic differential equations are obtained. Numerical results for the ${1}/{2}$ order of accuracy difference schemes of the approximate solution of mixed problems for stochastic parabolic equations with Dirichlet and Neumann conditions are provided. Numerical results are given.

Авторы
Ashyralyev A. 1, 2, 3 , Okur U. 4, 5 , Ashyralyyev C. 1, 6
Издательство
Pleiades Publishing, Ltd. (Плеадес Паблишинг, Лтд)
Номер выпуска
4
Язык
English
Страницы
1366-1387
Статус
Published
Том
45
Год
2024
Организации
  • 1 Department of Mathematics, Bahcesehir University
  • 2 Peoples’ Friendship University of Russia (RUDN University)
  • 3 Institute of Mathematics and Mathematical Modeling
  • 4 Near East University Lefkoşa(Nicosia)
  • 5 Württembergische Gemeinde-Versicherungen
  • 6 Mirzo Ulugbek National University of Uzbekistan
Ключевые слова
well-posedness; stochastic differential equations; stability; a single-step difference schemes
Цитировать
Поделиться

Другие записи

Avatkov V.A., Apanovich M.Yu., Borzova A.Yu., Bordachev T.V., Vinokurov V.I., Volokhov V.I., Vorobev S.V., Gumensky A.V., Иванченко В.С., Kashirina T.V., Матвеев О.В., Okunev I.Yu., Popleteeva G.A., Sapronova M.A., Свешникова Ю.В., Fenenko A.V., Feofanov K.A., Tsvetov P.Yu., Shkolyarskaya T.I., Shtol V.V. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.